How to Receive Carousels from SUSI Skype Bot

A good UI primarily focuses on attracting large numbers of users and any good UI designer aims to achieve user satisfaction with a user-friendly design. In this blog, we will learn how to show carousels SUSI Skype bot to make UI better and easy to use. We can show web search result from SUSI in form of text responses in Skype bot but it doesn’t follow design rule as it is not a good approach to show more text in constricted space. Users seem such a layout as less attractive. In SUSI webchat, RSS type response is returned as carousels and is viewable as:

We can implement RSS type response with code given below

for (var i = 0; i < metadata.count; i++) {
        msg = "";
        msg = text to be sent here;
        session.say(msg, msg);
}

If we implement RSS response using this code then we get a very constricted response because of more text. You can see it in the screenshot below:


To make RSS type response better we will implement carousels. Carousels are actually horizontal tiles to show rich content. We will use this code:

          
for (var i = 0; i < 4; i++) {               
    msg = "text here";               
    title  = "title here";               
    cards[i] = new builder.HeroCard(session)                   
         .title(title)
         .text(msg)           
}           
var reply = new builder.Message(session)
.attachmentLayout(builder.AttachmentLayout.carousel)                                        .attachments(cards);           
session.send(reply);

In above code, we are using a hero card which is a rich card containing title and message which are then attached as an attachment to the message. After implementing carousels for RSS response it looks like this

Resources

Bot Builder SDK documentation: https://docs.botframework.com/en-us/node/builder/chat-reference/modules/_botbuilder_d_.html
Rich Card examples: https://github.com/Microsoft/BotBuilder-Samples/blob/master/Node/cards-RichCards/app.js

Continue ReadingHow to Receive Carousels from SUSI Skype Bot

How to Debug SUSI Bots Deployment on Google Container Engine Using Kubernetes

You can learn how to deploy SUSI bots on to Google container engine using Kubernetes from this tutorial. In this blog, we will learn how to debug SUSI bots deployment to keep them running continuously. Whenever we create a deployment on Google container using Kubernetes a pod is created in which our deployment keeps running. Whenever we deploy bots to any platform to check if it is working right or not we refer to logs of that bot. To get logs first we will get pod for our deployment with this

kubectl get pods --namespace={your-namespace-of-deployment-here}

This will show us the pod for our deployment like this

Copy the name of this pod and enter this command to get logs

kubectl get logs {your-pod-here} --namespace={your-namespace-of-deployment-here}

This will show us the logs of our deployment. In Google cloud console you will not get running logs. You will get logs of the everything that has happened before you requested for logs. Now if there is some error in logs and you need to restart the deployment but in Kubernetes you can not restart your pod directly but to restart pod we will need to enter the following command

kubectl replace --force -f {path-to-your-deployment-config-file}

If everything goes well you will get to see the following with your deployment name in it


After deployment, if you want to see the services and deployment in detail follow the approach given below

To get services write this command

kubectl get service --namespace={your-namespace-of-deployment-here}

When you will get service it will look like

If you don’t get your external IP then check your service config file and after fixing it make a new deployment after deleting previous one.

To check deployment in detail write following command

kubectl describe deployments --namespace={your-namespace-of-deployment-here}

This will show us details about deployment like this

You can now easily solve issues with deployments now.

Resources

Debugging Kubernetes service locally using telepresence: https://www.telepresence.io/tutorials/kubernetes.html
Debug Services: https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/
Troubleshooting Kuberetes: https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_kubernetes/troubleshooting_kubernetes

 

Continue ReadingHow to Debug SUSI Bots Deployment on Google Container Engine Using Kubernetes

Shift from Java to Kotlin in SUSI Android

Previously SUSI Android was written in JAVA. But recently Google announced that it will officially support Kotlin on Android as a first class language so we decided to shift from Java to Kotlin. Kotlin runs on Java Virtual Machine and hence we can use Kotlin for Android app development. Kotlin is new programming language developed by JetBrains, which also developed IntelliJ-the IDE that Android Studio is based on. So Android Studio has excellent support for Kotlin.

Advantages of Kotlin over Java

  • Kotlin is a null safe language. It changes all the instances used in the code to non nullable type thus it ensures that the developers don’t get any nullPointerException.
  • Good Android Studio support. Kotlin tool is included with Android Studio 3.0 by default. But for Android Studio 2.x we need to install the required plugin for Kotlin.
  • Kotlin also provides support for Lambda function and other high order functions.
  • One of Kotlin’s greatest strengths as a potential alternative to Java is interoperability between Java and Kotlin. You can even have Java and Kotlin code existing side by side in the same project.
  • Kotlin provides the way to declare Extension function similar to that of C# and Gosu. We can use this function in the same way as we use the member functions of our class.

After seeing the above points it is now clear that Kotlin is much more effective than Java. In this blog post, I will show you how ForgotPasswordActivity is shifted from JAVA to Kotlin in SUSI Android.

How to install Kotlin plugin in Android Studio 2.x

We are using Android Studio 2.3.0 in our android project. To use Kotlin in Android Studio 2.x we need to install Kotlin plugin.

Steps to include Kotlin plugin in Android Studio 2.x are:

  • Go to File
  • After that select Settings
  • Then select Plugin Option from the left sidebar.
  • After that click on Browse repositories.
  • Search for Kotlin and install it.

Once it is installed successfully, restart Android Studio. Now configure Kotlin in Android Studio.

Shift  SUSI Android from JAVA to Kotlin

Kotlin is compatible with JAVA. Thus it allows us to change the code bit by bit instead of all at once. In SUSI Android app we implemented MVP architecture with Kotlin. We converted the code by one activity each time from JAVA to Kotlin. I converted the ForgotPassword of SUSI Android from JAVA to Kotlin with MVP architecture. I will discuss only shifting of SUSI Android from JAVA to Kotlin and not about MVP architecture implementation.

First thing is how to extend parent class. In JAVA we need to use extend keyword

public class ForgotPasswordActivity extends AppCompatActivity

but in Kotlin parent class is extended like

class ForgotPasswordActivity : AppCompatActivity ()

Second is no need to bind view in Kotlin. In JAVA we bind view using Butter Knife.

@BindView(R.id.forgot_email)

protected TextInputLayout email;

and

email.setError(getString(R.string.email_invalid_title));

but in Kotlin we can directly use view using id.

forgot_email.error = getString(R.string.email_invalid_title)

Another important thing is that instead of using setError and getError we can use only error for both purposes.

forgot_email.error

It can be used to get error in TextInputLayout ‘forgot_email’ and

forgot_email.error = getString(R.string.email_invalid_title)

can be use to set error in TextInputLayout ‘forgot_email’.

Third one is in Kotlin we don’t need to define variable type always

val notSuccessAlertboxHelper = AlertboxHelper(this@ForgotPasswordActivity, title, message, null, null, button, null, color)

but in JAVA we need to define it always.

AlertboxHelper notSuccessAlertboxHelper = new AlertboxHelper(ForgotPasswordActivity.this, title, message, null, null, positiveButtonText, null, colour);

And one of the most important feature of Kotlin null safety. So you don’t need to worry about NullPointerException. In java we need to check for null otherwise our app crash

if (url.getEditText() == null)

      throw new IllegalArgumentException(“No Edittext hosted!”);

But in Kotlin there is no need to check for null. You need to use ’?’ and Kotlin will handle it itself.  

input_url.editText?.text.toString()

You can find the previous ForgotPasswordActivity here. You can compare it with new ForgotPaswordActivity.

Reference

Continue ReadingShift from Java to Kotlin in SUSI Android

Burst Camera Mode in Phimpme Android

Camera is an integral part of core feature in Phimpme Android. Various features were added in the camera part such as resolution, timer, shutter sound, white balance etc. Click burst shot from camera is also an important feature to be added. Burst shot is clicking multiple pictures in one go.

Adding a Burst mode in Phimpme Camera

  • Adding burst mode enable entry in options

The popup view in Camera is added programmatically in app. Setting up the values from sharedpreferences. It takes the value and set burst mode off, 1x, 2x etc. according to value.

final String[] burst_mode_values = getResources().getStringArray(R.array.preference_burst_mode_values);
  String[] burst_mode_entries = getResources().getStringArray(R.array.preference_burst_mode_entries);
String burst_mode_value = sharedPreferences.getString(PreferenceKeys.getBurstModePreferenceKey(), "1");

Two methods created for setting up the previous and next values. To set up the previous value we need to check the current value to be not equal to -1 and greater that zero. Upgrade or downgrade the value of burst mode, according to the click.

public int onClickPrev() {
         if( burst_mode_index != -1 && burst_mode_index > 0 ) {
            burst_mode_index--;
            update(); ...
}

public int onClickNext() {
            if( burst_mode_index != -1 && burst_mode_index < burst_mode_values.length-1 ) {
              burst_mode_index++;
            update();...
}
  • Saving the value in sharedpreferences

So on clicking the previous and next, the value of burst mode value will be updated. As shown in the above code snippet, after every increment and decrement the values set on view and called update method to update the value in the sharedpreference as shown below.

private void update() {
        String new_burst_mode_value = burst_mode_values[burst_mode_index];
        SharedPreferences sharedPreferences = PreferenceManager.getDefaultSharedPreferences(main_activity);
SharedPreferences.Editor editor = sharedPreferences.edit();
editor.putString(PreferenceKeys.getBurstModePreferenceKey(), new_burst_mode_value);
editor.apply();}

  • Taking multiple Images

Now in the implementation part, we need to continuously click the image according to the burst value set by the user. So to enable this, first check the value not to be negative and should be greater than zero. Whole iteration work on separate variable named remaining burst photos. The value of the variable decrease after every image click i.e. takePhoto method calls.

if( remaining_burst_photos == -1 || remaining_burst_photos > 0 ) {
  if( remaining_burst_photos > 0 )
     remaining_burst_photos--;
  long timer_delay = applicationInterface.getRepeatIntervalPref();
  if( timer_delay == 0 ) {
     phase = PHASE_TAKING_PHOTO;
     takePhoto(true);
  }
  else {
     takePictureOnTimer(timer_delay, true);
  }
}

Resources:

 

Continue ReadingBurst Camera Mode in Phimpme Android

Migration of LXDE Desktop of Meilix to LXQt

Meilix is originally based on LXDE and our task is to migrate Meilix desktop to LXQt. Originally LXQt is a fusion of LXDE and the Razor-Qt desktop.

What is LXDE and LXQt ?
Both are desktop environment. They are light weight with a beautiful GUI and a user-friendly touch.

Older code to install a LXDE desktop in a Debian-based environment is (source):

apt-get -q -y --purge install --no-install-recommends \
lxsession lightdm lightdm-gtk-greeter lxterminal gvfs-backends seahorse \
network-manager-gnome xorg dbus-x11 openbox ubiquity-frontend-gtk vlc \
xfce4-mixer gstreamer0.10-alsa pulseaudio pavucontrol lxpanel \
mozilla-plugin-vlc lubuntu-core jockey-gtk

In the chroot environment, the maintainer has pick up the it’s dependencies and recommend packages and listed all packages which required to install a LXDE desktop. He keeps the size as small as possible. The maintainer had hand-picked only the required packages which can run the desktop.

What we did:
We tried with several approaches. Few worked and few did not. We removed all the packages related to desktop like gnome-games, gdm and gnome-language-en since we don’t want any sort of problem conflicts in the new desktop. We had also remove all the lines mentioned above which install LXDE.

Then I simply typed the line:

apt-get -q -y install lxqt

This way we only reach to the CLI version of the OS, and we actually don’t know whether we actually have the desktop install or not.
We tried to install lighdm their by

sudo apt-get install xinit

but that was also giving errors.

We changes the line to:

apt-get -q -y install xorg sddm lxqt

And suddenly the same approach which brought to a black screen and that was a desktop and the window manager was openbox.

Then we tried to add sddm.conf to get the desktop and realized that sddm starts plasma instead of LXQt. Then we added a config file for sddm to start up LXQt by default. This file is present in the location `/etc/sddm.conf` in the meilix-default-settings metapackage with the code as:

[Autologin]
User=hotelos
Session=lxqt.desktop

But due to a bug reported here, it still starts plasma instead of LXQt. So now I have to patch a script in the location /usr/share/initramfs-tools/scripts/casper-bottom/15autologin

In last paragraph of the script it will first detect the presence of sddm, if that exists, it will assume that plasma will be default desktop and try to detect Lubuntu.desktop and QLubuntu.desktop .
So, change plasma.desktop to lxqt.desktop.

In the 15autologin changes line 84:

if [ -f /root/usr/bin/sddm ]; then
	sddm_session=lxqt.desktop
	if [ -f /root/usr/share/xsessions/Lubuntu.desktop ]; then
    	    sddm_session=Lubuntu.desktop
	fi
	if [ -f /root/usr/share/xsessions/QLubuntu.desktop ]; then
    	    sddm_session=QLubuntu.desktop
	fi
fi

Here, sddm is made to configure it must use lxqt desktop.

And this worked. Finally we get the LXQt desktop for Meilix.

Since this script along with other scripts will be packed into a small filesystem called initramfs, therefore we have to write `update-initramfs -u ` after the installation of the meilix-default-settings package.

I had made a table of the things that worked and that didn’t.

Things which do not work Things which work
1. Firstly, we removed all these lines and replace it with `apt-get -q -y install lxqt`, but this will take us to a CLI and ask to install xinit which takes us to another error. We want to straight forward go to GUI.
2. Removing of all the others desktop dependencies like gnome (here), LXDE. The way build.sh was written is that it includes suggests and recommends packages to take less space.
3. Giving less RAM to the live boot ISO which gives the error in the installation of xinit in CLI mode.
4. Removing single line and adding single line and keep on testing rather than testing on a big code. This helped us to find that where actually the issue lies.
5. Removing the rc.xml file which is responsible for openbox configuration that we don’t need in the LXQt. Screenshots are attached below.
6. Finally I booted into CLI and there I type startx which ask me to do apt-get install xinit then after that I did startx from where it takes me to the black screen.
7. I included lightdm but it’s not working and when i tried to start it using the terminal of openbox “systemctl start lightdm” , it gives the error as “failed to start lightdm.service: Unit lightdm.service not found”.
8. When I tried to install lightdm “sudo apt-get install lightdm-gtx-greeter” and we get the error pasted below.
9. Then I though to go for sddm which is a “Simple Desktop Display Manager” a replacement for lightdm.
10. Finally we make it something like this “sudo apt-get install -q -y xorg sddm lxqt”
11. sddm starts plasma (KDE) instead of LXQt for getting the desire result we need is to add /etc/sddm.conf and set its login default to lxqt.desktop
12. After screenshot of number 10, I clicked ok and logout myself to CLI and login and type startx to get the screenshot.
13. All of the things that I was doing is in the xenial version of meilix and when I tried the same in zesty. I get the following result.
14. We think there must be something why Casper uses plasma by default instead of lxqt. We can also try preventing plasma.desktop being installed in the first place.
15. Casper will set up the login when live cd is started, and the file will be changed too.
So writing to the config file (sddm.conf) actually does nothing.
16. apt install lubuntu installs lubuntu.desktop while Casper (It is actually responsible for setting up live environment, which also needs to takes care of auto login) checks for Lubuntu.desktop (noting the capital letter)
It is in the script `/usr/share/initramfs-tools/scripts/casper-bottom/15autologin`
Probably we have to patch that.
So Casper will write configs to login manager like sddm.At the time of booting the ISO into the live desktop.
The problem is, the script Casper is using, detects a different file name for LXQt.
17. We get the “15autologin file” inside chroot directory if you build the iso by yourself.
18. Then we added the line to update – initramfs (initramfs is a small filesystem that linux will mount first, which will only have basic functions, then other partitions).

Number 3

xinit error after increasing of the RAM

Number 5

Number 6

This is Openbox.

Number 8

Number 10

Number 12

Number 13.

Finally the desktop LXQt

References:
LXQt Desktop
LXDE Desktop
Switching Desktop Environment

Continue ReadingMigration of LXDE Desktop of Meilix to LXQt

Implementation of Image Viewer in Susper

We have implemented image viewer in Susper similar to Google.

Before when a user clicks on a thumbnail the images are opened in a separate page, but we want to replace this with an image viewer similar to Google.

Implementation Logic:

1. Thumbnails for images in susper are arranged as shown in the above picture.

2. When a user clicks on an image a hidden empty div(image viewer) of the last image in a row is opened.

3. The clicked image is then rendered in the image viewer (hidden div of the last element in a row).

4. Again clicking on the same image closes the opened image viewer.

5. If a second image is clicked then, if an image is in the same row, it is rendered inside the same image viewer. else if the image is in another row, this closes the previous image viewer and renders the image in a new image viewer (hidden div of the last element of the row)

6. Since image viewer is strictly the hidden empty div of the last element in a row when it is expanded it occupies the position of the next row, moving them further down similar to what we want.

Implementation Code

results.component.html

<div *ngFor="let item of items;let i = index">
 <div class="item">
   <img src="{{item.link}}" height="200px" (click)="expandImage(i)" [ngClass]="'image'+i">
 </div>
 <div class=" item image-viewer" *ngIf="expand && expandedrow === i">
   <span class="helper"></span> <img [src]="items[expandedkey].link" height="200px" style="vertical-align: middle;">
 </div>

</div>

Each thumbnail image will have a <div class=” item image-viewer” which is in hidden state initially.

Whenever a user clicks on a thumbnail that triggers expandImage(i)

results.component.ts

expandImage(key) {
 if (key === this.expandedkey    this.expand === false) {
   this.expand = !this.expand;
 }
 this.expandedkey = key;
 let i = key;
 let previouselementleft = 0;
 while ( $('.image' + i) && $('.image' + i).offset().left > previouselementleft) {
   this.expandedrow = i;
   previouselementleft = $('.image' + i).offset().left;
   i = i + 1;

The expandImage() function takes the unique key and finds which image is the last element is the last image in the whole row, and on finding the last image, expands the image viewer of the last element and renders the selected image in the image viewer.

The source code for the whole implementation of image viewer could be seen at pull: https://github.com/fossasia/susper.com/pull/687/files

Resources:

  1. Selecting elements in Jquery: https://learn.jquery.com/using-jquery-core/selecting-elements/

 

Continue ReadingImplementation of Image Viewer in Susper

Implementing Change Password Feature in SUSI Android App using Custom Dialogs

Recently a new servlet was implemented on the SUSI Server about changing the password of the logged in user. This feature comes in handy to avoid unauthorized usage of the SUSI Account. Almost all the online platforms have this feature to change the password to avoid notorious user to unethical use someone else’s account. In SUSI Android app this new API was used with a nice UI to change the password of the user. The process is very simple and easy to grasp. This blog will try to cover the API information and implementation of the Change Password feature in the android client.

API Information

For changing the password of SUSI Account of the user, we have to call on  /aaa/changepassword.json

We have to provide three parameters along with this api call:

  1. changepassword:  Email of user (type string) using which user is logged in.
  2. password:  Old password (type string with min length of 6) of the user.
  3. newpassword: New password (type string with min length of 6) of the user.
  4. access_token: An encrypted access_token indicating user is logged in.

Sample Response (Success)

{
  "session": {"identity": {
    "type": "email",
    "name": "YOUR_EMAIL_ADDRESS",
    "anonymous": false
  }},
  "accepted": true,
  "message": "Your password has been changed!"
}

Error Response (Failure). This happens when user is not logged in:

HTTP ERROR 401
Problem accessing /aaa/changepassword.json. Reason:
   Base user role not sufficient. Your base user role is 'ANONYMOUS', your user role is 'anonymous'

Implementation in SUSI Android App

The change password option is located in Settings Activity and displayed only when user is logged in. So, if a logged in user wants to change the password of his/her SUSI AI account, he/she can simply go to the Settings and click on the option. Clicking on the options open up a dialog box with 3 input layouts for:

  1. Current Password
  2. New Password
  3. Confirm New Password

So, user can simply add these three inputs and click “Ok”. This will change the password of their account. Let’s see some code explanation.

  1. When user clicks on the “reset password” option from the settings, the showResetPasswordAlert() method is called which displays the dialog. And when user clicks on the “OK” button the resetPassword method() in the presenter is called passing input from the three input layout as parameters.

settingsPresenter.resetPassword(password.editText?.text.toString(), newPassword.editText?.text.toString(), conPassword.editText?.text.toString())

fun showResetPasswordAlert() {
   val builder = AlertDialog.Builder(activity)
   val resetPasswordView = activity.layoutInflater.inflate(R.layout.alert_reset_password, null)
   password = resetPasswordView.findViewById(R.id.password) as TextInputLayout
   newPassword = resetPasswordView.findViewById(R.id.newpassword) as TextInputLayout
   conPassword = resetPasswordView.findViewById(R.id.confirmpassword) as TextInputLayout
   builder.setView(resetPasswordView)
   builder.setTitle(Constant.CHANGE_PASSWORD)
           .setCancelable(false)
           .setNegativeButton(Constant.CANCEL, null)
           .setPositiveButton(getString(R.string.ok), null)
   resetPasswordAlert = builder.create()
   resetPasswordAlert.show()
   setupPasswordWatcher()
   resetPasswordAlert.getButton(AlertDialog.BUTTON_POSITIVE)?.setOnClickListener {
       settingsPresenter.resetPassword(password.editText?.text.toString(), newPassword.editText?.text.toString(), conPassword.editText?.text.toString())
   }
}
  1. In the resetPassword method, all details about the passwords are checked like:
  1. If passwords are not empty.
  2. If passwords’ lengths are greater than 6.
  3. If new password and confirmation new password matches

   

When all the conditions are satisfied and all the inputs are valid, resetPassword() in model is called which makes network call to change password of the user.

settingModel.resetPassword(password,newPassword,this)

override fun resetPassword(password: String, newPassword: String, conPassword: String) {
   if (password.isEmpty()) {
       settingView?.invalidCredentials(true, Constant.PASSWORD)
       return
   }
   if (newPassword.isEmpty()) {
       settingView?.invalidCredentials(true, Constant.NEW_PASSWORD)
       return
   }
   if (conPassword.isEmpty()) {
       settingView?.invalidCredentials(true, Constant.CONFIRM_PASSWORD)
       return
   }

   if (!CredentialHelper.isPasswordValid(newPassword)) {
       settingView?.passwordInvalid(Constant.NEW_PASSWORD)
       return
   }

   if (newPassword != conPassword) {
       settingView?.invalidCredentials(false, Constant.NEW_PASSWORD)
       return
   }
   settingModel.resetPassword(password,newPassword,this)
}

Summary

So, this blog talked about how the Change Password feature is implemented in SUSI Android App. This included how a network call is made, logic for making network, information about API, making dialogs with custom UI, etc. So, If you are looking forward to contribute to SUSI Android App, this can help you a little. But if not so, this may also help you in understanding and how you can implement a dialog box with custom UI.

References

  1. To know about servlets https://en.wikipedia.org/wiki/Java_servlet
  2. To see how to implement one https://www.javatpoint.com/servlet-tutorial
  3. To see how to make network calls in android using Retrofit https://guides.codepath.com/android/Consuming-APIs-with-Retrofit
  4. Official docs for displaying dialog https://developer.android.com/guide/topics/ui/dialogs.html
  5. Implementing dialog boxes with custom UI https://stackoverflow.com/questions/13341560/how-to-create-a-custom-dialog-box-in-android
  6. Pull Request for API reference: https://github.com/fossasia/susi_server/pull/352
Continue ReadingImplementing Change Password Feature in SUSI Android App using Custom Dialogs

Implementing Custom Placeholders in Open Event Front-end

We have custom placeholders that are custom images used for different event topics in Open Event Front-end. The custom placeholder are set in the system-images route under admin. The system-images is a dynamic route which changes according the selected topic which brings a challenge to handle dynamic requests to the Orga-server. Lets see how we did it?
Retrieving data from server:

Each custom-placeholder is related to an event-sub-topic, which is related to an event-topic. We fetch a list of all the event-topics available on the system-images route. We also include event-sub-topics in the request & sort the topics by name.

model() {
  return this.store.query('event-topic', {
    include : 'event-sub-topics',
    sort    : 'name'
  });
},
afterModel(model, transition) {
  this._super(...arguments);
  if (transition.targetName === 'admin.content.system-images.index') {
    this.replaceWith('admin.content.system-images.list', model.toArray()[0].id);
  }
}

We override the afterModel() method of the route and redirect to the system-images/list route. We pass the ID of the topic to the dynamic list route, where we use this ID to get all the subtopics of the selected topic.

Handling dynamic route & model:

On the system-images/list route we set the params passed by the system-images route. In the model function we return all the subtopics of the selected topic. On clicking any topic we pass the ID of the topic to the list route where we retrieve all the sub-topics.

model(params) {
  this.set('params', params);
  return this.store.findRecord('event-topic', params.topic_id, { include: 'event-sub-topics' });
}

We dynamically render all the subtopics and the related custom-placeholders by looping through the array of the subtopics. We render an image along with a button to change the placeholder for each of the sub-topic. We use a custom modal for changing the placeholder image and for entering details related to the placeholder.

    <h4>{{subTopic.name}}</h4>
    <img src="{{subTopic.placeholder.originalImageUrl}}" class="ui big image" alt={{subTopic.name}}>
    <div class="ui hidden divider"></div>
    <button class="ui button primary" {{action 'openModal' subTopic.placeholder}} id="changebutton">{{t 'Change'}}</button>

Saving a custom-placeholder 

We use a modal which gets triggered by clicking the change button of the subtopic. The modal allows us to change the image related to the subtopic and other related details like the copyright information and origin information.

The `updatePlaceholder` method gets triggered when the update button is clicked, which sends a PATCH request to the server and updates all the changes made to the custom-placeholder. If the request is successful we close the model and show a success message to the user using the notify service.

updatePlaceholder() {
  this.get('placeholder').then(placeholder => {
    placeholder.save()
      .then(() => {
        this.set('isOpen', false);
        this.notify.success(this.l10n.t('Placeholder has been saved successfully.'));
      })
      .catch(()=> {
        this.notify.error(this.l10n.t('An unexpected error has occured. Placeholder not saved.'));
      });
  });
}

Thank you for reading the blog, you can check the source code for the example here.

Resources

Continue ReadingImplementing Custom Placeholders in Open Event Front-end

Reactive Side Effects of Actions in Loklak Search

In a Redux based application, every component of the application is state driven. Redux based applications manage state in a predictable way, using a centralized Store, and Reducers to manipulate various aspects of the state. Each reducer controls a specific part of the state and this allows us to write the code which is testable, and state is shared between the components in a stable way, ie. there are no undesired mutations to the state from any components. This undesired mutation of the shared state is prevented by using a set of predefined functions called reducers which are central to the system and updates the state in a predictable way.

These reducers to update the state require some sort triggers to run. This blog post concentrates on these triggers, and how in turn these triggers get chained to form a Reactive Chaining of events which occur in a predictable way, and how this technique is used in latest application structure of Loklak Search. In any state based asynchronous application, like, Loklak Search the main issue with state management is to handle the asynchronous action streams in a predictable manner and to chain asynchronous events one after the other.  The technique of reactive action chaining solves the problem of dealing with asynchronous data streams in a predictable and manageable manner.

Overview

Actions are the triggers for the reducers, each redux action consists of a type and an optional payload. Type of the action is like its ID which should be purposely unique in the application. Each reducer function takes the current state which it controls and action which is dispatched. The reducer decides whether it needs to react to that action or not. If the user reacts to the action, it modifies the state according to the action payload and returns the modified state, else, it returns the original state. So at the core, the actions are like the triggers in the application, which make one or more reducers to work. This is the basic architecture of any redux application. The actions are the triggers and reducers are the state maintainers and modifiers. The only way to modify the state is via a reducer, and a reducer only runs when a corresponding action is dispatched.

Now, who dispatches these actions? This question is very important. The Actions can be technically dispatched from anywhere in the application, from components, from services, from directives, from pipes etc. But we almost in every situation will always want the action to be dispatched by the component. Component who wishes to modify the state dispatch the corresponding actions.

Reactive Effects

If the components are the one who dispatch the action, which triggers a reducer function which modifies the state, then what are these effects, cause the cycle of events seem pretty much complete. The Effects are the Side Effects, of a particular action. The term “side effect” means these are the piece of code which runs whenever an action is dispatched. Don’t confuse them with the reducer functions, effects are not same as the reducer functions as they are not associated with any state i.e. they don’t modify any state. They are the independent sources of other actions. What this means is whenever an Action is dispatched, and we want to dispatch some other action, maybe immediately or asynchronously, we use these side effects. So in a nutshell, effects are the piece of code which reacts to a particular action, and eventually dispatches some other actions.

The most common use case of effects is to call a corresponding service and fetch the data from the server, and then when the data is loaded, dispatch a SearchCompleteAction. These are the simplest of use cases of effects and are most commonly use in Loklak Search. This piece of code below shows how it is done.

@Effect()
search$: Observable<Action>
= this.actions$
.ofType(apiAction.ActionTypes.SEARCH)
.map((action: apiAction.SearchAction) => action.payload)
.switchMap(query => {
return this.apiSearchService.fetchQuery(query)
.map(response => new apiAction.SearchCompleteSuccessAction(response))

This is a very simple type of an effect, it filters out all the actions and react to only the type of action which we are interested in, here SEARCH, and then after calling the respective Service, it either dispatches SearchComplete or a SearchFail action depending on the status of the response from the API. The effect runs on SEARCH action and eventually dispatches, the success or the fail actions.

This scheme illustrates the effect as another point apart from components, to dispatch some action. The difference being, components dispatch action on the basis of the User inputs and events, whereas Effects dispatch actions on the basis of other actions.

Reactive Chaining of Actions

We can thus take the advantage of this approach in a form of reactive chaining of actions. This reactive chaining of actions means that some component dispatches some action, which as a side effects, dispatches some other action, and it dispatches another set of actions and so on. This means a single action dispatched from a component, brings about the series of actions which follow one another. This approach makes it possible to write reducers at the granular level rather than complete state level. As a series of actions can be set up which, start from a fine grain, and reaches out to a coarse grain. The loklak search application uses this technique to update the state of query. The reducers in the loklak search rather than updating the whole query structure update only the required part of the state. This helps in code maintainability as the one type of query attribute has no effect on the other type

@Effect()
inputChange$: Observable<Action>
= this.actions$
.ofType(queryAction.ActionTypes.VALUE_CHANGE)
.map(_ => new queryAction.QueryChangeAction(''));

@Effect()
filterChange$: Observable<Action>
= this.actions$
.ofType(queryAction.ActionTypes.FILTER_CHANGE)
.map(_ => new queryAction.QueryChangeAction(''));

Here the QUERY_CHANGE action further can do other processing of the query and then dispatch the SearchAction, which eventually calls the service and then return the response, then the success or fail actions can be dispatched eventually.

Conclusion

The reactive side effects is one of the most beautiful thing we can do with Redux and Reactive Programming. They provide an easy clean way to chain events in an application, which helps in a cleaner non-overlapping state management along with clean and simple reducers. This idea of the reactive chaining can be extended to any level of sophistication, and that too in a simple and easy to understand manner.

Resources and links

Continue ReadingReactive Side Effects of Actions in Loklak Search