Option to secure particular albums in Phimpme Android Application

In the Phimpme Android application, users can perform various operations on the albums available such as creating a zip file of the album, rename an album and many more. However, one another useful functionality that has been added to the Phimpme Android application is the option to secure particular albums. So in this post, I will be discussing the implementation of this security feature.

Step 1

Firstly, a view item for providing the option to enable security for particular albums is required to be added to the security settings layout. The two-state toggle switch widget provided by the Android framework along with a textview has been added as the required view item. A screenshot depicting the layout change is provided below.

The code snippet representing the operation is provided below.

<TextView
  android:id=“@+id/security_body_apply_folders_title”
  android:layout_width=“wrap_content”
  android:layout_height=“wrap_content”
  android:text=“@string/local_folder”
  android:textColor=“@color/md_dark_background”
  android:textSize=“@dimen/medium_text” />

<android.support.v7.widget.SwitchCompat
  android:id=“@+id/security_body_apply_folder_switch”
  android:layout_width=“wrap_content”
  android:layout_height=“wrap_content”
  android:layout_alignParentEnd=“true”
  android:layout_centerVertical=“true”
  android:layout_gravity=“center_vertical”
  android:button=“@null”
  android:hapticFeedbackEnabled=“true” />

Step 2

Now we need to keep track of the albums selected by the user to secure. This can be done by storing the selected album/albums paths in an ArrayList<String> which can be referred later when required in the process.

The required code snippet to perform the above mentioned operation is provided below.

holder.foldercheckbox.setOnCheckedChangeListener(new CompoundButton.OnCheckedChangeListener() {
@Override public void onCheckedChanged(CompoundButton compoundButton, boolean b) {
if(b){
securedfol.add(a.getPath());
a.setsecured(true);
}else{
securedfol.remove(a.getPath());
a.setsecured(false);
}
}
});

Step 3

Now we need to store the selected albums preference in the SharedPreference so that the user’s security preference persists even when the user exits the application and the user doesn’t have to redo the securing operation the next time user launches the application. The ArrayList<String> object containing the path of the user choice albums are converted to JSON representation by the use of the Gson Java library and the string key denoting the JSON representation of the list is saved in the SharedPreference thereafter.

if(securedfol.size()>0){
  SharedPreferences.Editor editor = SP.getEditor();
  Gson gson = new Gson();
  String securedfolders = gson.toJson(securedfol);
  editor.putString(getString(R.string.preference_use_password_secured_local_folders), securedfolders);
  editor.commit();}

Now at the time of performing other operations on the secured folders, the list containing the secured folder paths is retrieved from SharedPreference and the choosen folder’s path is searched in the obtained list, then the user is asked to authenticate accordingly.

This is how we have implemented the functionality to secure particular albums in the Phimpme Android application. To get the full source code, please refer to the Phimpme Android Github repository listed in the resource section below.

Resources

1.Android Developer Guide –
https://developer.android.com/training/data-storage/shared-preferences

2.Github-Phimpme Android Repository – https://github.com/fossasia/phimpme-android/

3.Gson Java library tutorial –
http://www.vogella.com/tutorials/JavaLibrary-Gson/article.html

Implementing Search Functionality in Phimpme Android Application.

In the Phimpme Android application, users are provided with options to perform various operations on the albums available such as move, creating a zip file of the album, rename an album and many more. However, one another useful functionality that has been added to the Phimpme Android application is the option to search albums. So in this post, I will be discussing the implementation of search functionality.

Step 1

Android framework provides developers with a search widget called SearchView that provides a user interface for the user to search a query and submit the request. So first setting up the widget in the action bar of the activity is required. The searchview widget can be added to the action bar as a menu item by adding the following lines in the XML menu resource file menu_albums.xml.

<item
  android:id=“@+id/search_action”
  android:title=“@string/search_menu”
  android:visible=“true”
  android:icon=“@drawable/ic_search_black_24dp”
  android:tint=“@color/white”
  app:actionViewClass=“android.support.v7.widget.SearchView”
  app:showAsAction=“always” />

Step 2

Now SearchView.OnQueryTextListener interface is used for initiating the search operation and listening to the callbacks for changes to the query text. For the purpose of listening to the querytext, two methods are used here both of which are listed below.

onQueryTextChanged(String Text) – This method is called every time the query text is changed by the user and returns a boolean value, false if SearchView should perform the default action of showing any suggestions and true if the action was handled by the listener.

onQueryTextSubmit(String query) – This method is called when the user submits a query which could be done with a key press on the keyboard or by pressing the submit button. It also returns a boolean value which is true if the query has been handled by the listener, otherwise false.

The code snippet for the implementation of the above mentioned interface is provided below.

searchView.setOnQueryTextListener(new SearchView.OnQueryTextListener() {
  @Override
  public boolean onQueryTextSubmit(String query) {
      return false;
  }

  @Override
  public boolean onQueryTextChange(String newText) {
      return searchTitle(newText);
  }
});

Step 3

In the final step, with the use of the onQueryTextChange method of the SearchView.onQueryTextListener interface the search operation and displaying the search results in the UI can be achieved. The onQueryTextChange method is called every time the search-query text changes. From the onQueryTextChange method, another method named searchTitle is invoked. Inside the searchTitle method the album names matching the search-query are searched from an Arraylist<Albums> containing all the albums displayed in the application. The albums obtained as a result of the search operation are then stored in another Arraylist<Album> which is thereafter passed as a parameter to the swapDataSet method of the AlbumsAdapter class to display the searched albums in the album view. The code snippet used for the above operations is provided below.

public boolean searchTitle(String newText) {
  if (!fromOnClick) {
      String queryText = newText;
      queryText = queryText.toLowerCase();
      final ArrayList<Album> newList = new ArrayList<>();
      for (Album album : albList) {
          String name = album.getName().toLowerCase();
          if (name.contains(queryText)) {
              newList.add(album);
          }
      }
      if(newList.isEmpty()){
          checkNoSearchResults(newText);
      }
      else{
          if(textView.getVisibility() == View.VISIBLE){
              textView.setVisibility(View.INVISIBLE);
          }
      }
      albumsAdapter.swapDataSet(newList);
  } else {
      fromOnClick = false;
  }
  return true;
}

This is how we have implemented the search functionality in the Phimpme Android application. To get the full source code, please refer to the Phimpme Android Github repository.

The screenshot for displaying the search result in album view is provided below.

Resources

1.Android Developer Guide – https://developer.android.com/reference/android/widget/SearchView

2.Github-Phimpme Android Repository – https://github.com/fossasia/phimpme-android/

3.Creating a search interface in Android – https://medium.com/@yugandhardcs21/creating-a-search-interface-in-android-dc1fd6a53b4

Option to exclude albums in Phimpme Android Application

In the Phimpme Android Application, users can perform various operations on the albums available such as move, creating a .zip file of the album, rename an album, delete the album and much more. However one another important functionality that has been implemented in the application is the option to exclude album/albums. In this post we will be discussing how we achieved the functionality to exclude albums in Phimpme Android Application.

Step 1

First we need to keep track of the albums selected by the user to exclude. This can be done by storing the selected albums in an Arraylist<Album> which can be referred later when required for the process of exclusion. The storing of the albums can be done with the help of following lines of code.

private int toggleSelectAlbum(int index) {
if (dispAlbums.get(index) != null) {
  dispAlbums.get(index).setSelected(!dispAlbums.get(index).isSelected());
  if (dispAlbums.get(index).isSelected()) selectedAlbums.add(dispAlbums.get(index));
  else selectedAlbums.remove(dispAlbums.get(index));
}
return index;
}

Step 2

After the selected albums are stored in an Arraylist<Album>, a function call of excludeSelectedAlbums() of HandlingAlbums class is done passing in Context as the parameter. In the method excludeSelectedAlbums() the selected albums are retrieved from the Arraylist one by one and another method excludeAlbum() is called with the album, context being passed as the parameters. The code snippet performing the above operation is provided below.

public void excludeSelectedAlbums(Context context) {
for (Album selectedAlbum : selectedAlbums)
  excludeAlbum(context, selectedAlbum);
clearSelectedAlbums();
}

Step 3

Thereafter an instance of class CustomsAlbumHelper is created and excludeAlbum() method is called with path of the album passed as parameter, and the selected album is removed from the list containing the currently displayed albums. Code snippets for the above operations are provided below.

private void excludeAlbum(Context context, Album a) {
CustomAlbumsHelper h = CustomAlbumsHelper.getInstance(context);
h.excludeAlbum(a.getPath());
dispAlbums.remove(a);
}

Step 4

Now in the excludeAlbum() method of CustomsAlbumHelper class a writable instance of albums_settings sqlite database is obtained. A check is performed if the current album is present in the albums table or not, if not then a row representing the current album is created. Thereafter the excluded value for the current album in the table is updated to integer 1 denoting that the album is excluded. The code snippet required for the above mentioned operations are provided below.

public void excludeAlbum(String path) {
  SQLiteDatabase db = this.getWritableDatabase();
  checkAndCreateAlbum(db, path);
  ContentValues values = new ContentValues();
  values.put(ALBUM_EXCLUDED, 1);
  db.update(TABLE_ALBUMS, values, ALBUM_PATH+“=?”, new String[]{    path});
  db.close();
}

This is how we have achieved the functionality of excluding albums in the Phimpme Android application. To get the full source code, please refer to the Phimpme Android GitHub repository listed in the resources section below.

The screenshot for the display of the excluded albums is provided below.

Resources

  1. Android Developer Guide –https://developer.android.com/training/data-storage/sqlite.html
  1. Github-Phimpme Android Repository –https://github.com/fossasia/phimpme-android/
  1. Sqlite Operations Tutorial – https://www.androidhive.info/2011/11/android-sqlite-database-tutorial/

Option to hide albums in Phimpme Android Application

In Phimpme Android Application, users can perform various operations on the albums available such as move, creating a .zip file for the album, delete the album, exclude an album, rename an album, pin an album to the top and more. However one another important functionality that has been added in the application is the option to hide  album/albums. So in this post I will be discussing how we achieved the functionality to hide albums in Phimpme Android Application.

Step 1

First we need to get the albums which are selected to be hidden. This can be done by storing the selected items in an Arraylist<Album> which will keep track of the users choice to hide albums. This can be achieved with the following lines of code.

private int toggleSelectAlbum(int index) {
if (dispAlbums.get(index) != null) {
  dispAlbums.get(index).setSelected(!dispAlbums.get(index).isSelected());
  if (dispAlbums.get(index).isSelected()) selectedAlbums.add(dispAlbums.get(index));
  else selectedAlbums.remove(dispAlbums.get(index));
}
return index;
}

Step 2

After storing of the albums to be hidden a function hideSelectedAlbums() is called with Context being passed as the parameter. Now inside this function we retrieve the albums looping through the Arraylist that stores the albums to be hidden and call another function hideAlbum() passing in the album and context as the parameters. The code snippet representing the above operation is given below.

public void hideSelectedAlbums(Context context) {
for (Album selectedAlbum : selectedAlbums)
  hideAlbum(selectedAlbum, context);
clearSelectedAlbums();
}

Step 3.

Now a .nomedia file is added to the directories/albums which are to be hidden and the android Media Scanner System service is triggered thereafter. As a result of the presence of the .nomedia file inside the directory the Media Scanner service won’t scan the particular directory/album thereby the album will not be picked up at the time of displaying the albums. The code snippet to perform the mentioned operation is provided below.

File dirName = new File(path);
File file = new File(dirName, “.nomedia”);
if (!file.exists()) {
try {
  FileOutputStream out = new FileOutputStream(file);
  out.flush();
  out.close();
  scanFile(context, new String[]{ file.getAbsolutePath() });
} catch (Exception e) {
  e.printStackTrace();
}
}

The screenshot for the display of hidden folders is provided below.

This is how we have achieved the functionality of hiding albums in the Phimpme Android application. To get the full source code, please refer to the Phimpme Android GitHub repository listed in the resources section below.

Resources

  1. Android Developer Guide – https://developer.android.com/reference/android/media/MediaScannerConnection.html
  2. Github-Phimpme Android Repository –https://github.com/fossasia/phimpme-android/
  3. Hiding directories using .nomedia file – http://www.easycodeway.com/2016/08/hide-files-in-android-using-nomedia-file.html

Displaying Image location Address In Phimpme Android Application

In Phimpme Android application one of the features available is to view the details of any image. The details consists of attributes including Date and time at which the image was captured, size of the image, title, path, EXIF data, description added to the image, location etc. However in the location attribute the location coordinates of the image as well as the location address can be displayed depending on the user’s preference. The process of obtaining the coordinates from address is called as Geocoding and obtaining string address from coordinates is called reverse Geocoding. So in this post I will be explaining how to implement set of strings denoting the address from the available coordinates.

Step 1

First we need to create an instance of the class Geocoder passing context and function Locale.getDefault() as the parameters.  The function of the attribute Locale.getdefault is provided below.

Locale.getDefault() – It returns the current value of the default locale for the current instance of the Java Virtual Machine. The Java Virtual Machine sets the default locale during startup based on the host environment.The code snippet to perform the above mentioned operation is given below.

Geocoder geocoder = new Geocoder(context, Locale.getDefault());

Step 2

Now a function call of getFromLocation() of the Geocoder class is done where we need to pass the Lattitude and Longitude values of the Location object as parameters. The lattitude and longitudes values can be obtained by the use of the Location object functions getLatitude() and getLongitude() respectively. The function getFromLocation() will return a list of Address objects which will contain the extracted addresses from the passed latitude and longitude values. We also need to pass a third parameter an integer value which will determine the maximum no of addresses to be returned. Here we have requested for a maximum of one address. The following code snippet is used to perform the desired function call.

try {
 List<Address> addressList = geocoder.getFromLocation(location.getLatitude(), location.getLongitude(), 1);
} catch (IOException e) {
  e.printStackTrace();
}

Step 3

After obtaining the list of Address objects returned from the function call of getFromLocation() we will extract the first address from the list since we want a maximum of 1 address. The Address object will contain information like the address name, country, state, postal code etc. Now the set of strings describing the location can be retrieved with the help of the function getMaxAddressLineIndex() of Address class. The code snippets to perform the above mentioned operations is provided below.

ArrayList<String> addresslines = new ArrayList<String>();
Address address = addressList.get(0);
for(int i = 0; i <= address.getMaxAddressLineIndex(); i++) {
  addresslines.add(address.getAddressLine(i));
}
details.put(context.getString(R.string.location), TextUtils.join(System.getProperty(“line.separator”),
      addresslines));

The screenshot displaying the location address is provided below.

This is how we have achieved the functionality of displaying location address in a set of strings from available coordinates in the Phimpme Android application. To get the full source code, please refer to the Phimpme Android GitHub repository listed in the resources section below.

Resources

1.Android Developer Guide – https://developer.android.com/training/location/display-address.html

2.Github-Phimpme Android Repository – https://github.com/fossasia/phimpme-android/

3.Address Class Guide- https://developer.android.com/reference/android/location/Address.html

 

Leak Canary in Phimpme Android

Leak Canary is a memory detection library for Android and Java. A memory leak occurs when you hold an object for too long after its purpose has been served. If some object is holding another object then the Garbage collector will not be able to collect and this is known as Memory Leak. These memory leaks can be minor (in KB’s) or can lead to an app in ANR state with OutOfMemoryError.Hence to recover and capture this memory leak, Leak Canary is used for Android and Java.

For every functioning done in android, the system needs resource such as memory. Hence in Java the Garbage Collector(GC) plays a major role in deallocating the memory. The GC is mainly used to reclaim memory. Now the question arises, why do we need a memory leak detection library when GC is already present. The answer is sometimes the developers makes programming mistakes and that leads to inhibit the GC to collect the objects that are of no use and mark them as useful objects.

The GC starts from one point(root) and marks active to all the objects that holds references from GC root and the objects which are not marked are wiped out of memory.Hence when some unuseful objects is marked active, memory leak occurs.Hence to eliminate these problems  of memory leaks, we have employed the use of Leak Canary in our project.

The Phimpme project and every related project has possible memory leaks, like for instance we have used fragments in settings activity and to catch that memory leak we have added the refwatcher instance. Hence if any memory leaks occur we get the error such as ‘org.fossasia.phimpme’  leaked 40kb.This can also be checked by Leaks App in the android phone, which has features of showing and sharing the heap dump and info.

To add the Leak Canary in your android app, follow these steps:

  • Add the dependencies in build.gradle(app level)

    dependencies {
       debugCompile 'com.squareup.leakcanary:leakcanary-android:1.5.4'
       releaseCompile 'com.squareup.leakcanary:leakcanary-android-no-op:1.5.4'
     }
  • Add the following code to your Application class

    public class MyApplication extends Application{
    @Override
    public void onCreate() {
       if (LeakCanary.isInAnalyzerProcess(this)) {
           // This process is dedicated to LeakCanary for heap analysis.
           // You should not init your app in this process.
           return;
       }
       LeakCanary.install(this);
    }
    
  • Leak canary now will automatically detect the memory leaks  from all activities.

For fragment a refwatcher is needed, hence

public class MYFragment extends Fragment {
    ...

    @Override
    public void onDestroy() {
        super.onDestroy();
        MainApplication.getRefWatcher(getActivity()).watch(this);
    }
}

Hence LeakCanary is setup finally, and now the memory leaks will be detected.

Resources

 

Option to Print Photos in the Phimpme Android Application

In the Phimpme Android application, users can perform various operations on the photos available such as copy, move, add the image to favourites collection, share the images with others, use it as covers, wallpapers and much more. However one another important functionality that has been added in the Phimpe Android application is printing of images. In this post we will be discussing about the implementation of the above mentioned functionality.

Step 1

First we need to create an instance of the class PrintHelper passing context as the constructor parameter which can be done with the following line of code.

PrintHelper photoPrinter = new PrintHelper(this);

Step 2

Now a  function call of setScalemode() is done where we require passing a parameter out of the two options SCALE_MODE_FIT and SCALE_MODE_FILL. The difference between the two options is explained below.

SCALE_MODE_FIT – This option sizes the image so that the whole image is displayed within the printable area of the page.

SCALE_MODE_FILLThis option scales the image so that it fills the entire printable area of the page. Choosing this setting means that some portion of the top and bottom, or left and right edges of the image is left out. This option is the default value if no scale mode is set.

Though neither of the scaling options alter the existing aspect ratio of the image, we are going with the latter of the two as the requirement here is to display the whole image in the printable area. The following code snippet is used to perform the desired function call.

photoPrinter.setScaleMode(PrintHelper.SCALE_MODE_FIT);

Step 3

After obtaining an instance of the class PrintHelper and calling the function setScalemode with the proper scale parameter, the path of the image to be printed is extracted and is passed in as a parameter to the decodefile function of the class BitmapFactory which has another parameter.

A Bitmap object is the return result of the operation performed by the function decodefile. The Bitmap object is thereafter passed in as a parameter to the printBitmap() function of the PrintHelper class along with a string attribute which will denote the file name of the printed photo. The code snippet to the above mentioned operations are given below.

Bitmap bitmap = BitmapFactory.decodeFile(getAlbum().getCurrentMedia().getPath(), new BitmapFactory.Options());
photoPrinter.printBitmap(getString(R.string.print), bitmap);

After the printbitmap() is called no further action is required from the side of the application. The Android system print interface appears where the users can select the printing options. The user can proceed to print the image or cancel the operation. If the user decides to proceed with the operation a print job is created and printing operation notification appears in the system navigation bar. The system print interface appearing is displayed below.

This is how we have achieved the functionality of printing images in the Phimpme Android application. To get the full source code, please refer to the Phimpme Android GitHub repository listed in the resources section below.

Resources

1.Android Developer Guide – https://developer.android.com/training/printing/index.html

2.Github-Phimpme Android Repository – https://github.com/fossasia/phimpme-android/

3.PrintHelper Class Guide – https://developer.android.com/reference/android/support/v4/print/PrintHelper.html

 

Enhancing Rotation in Phimp.me using Horizontal Wheel View

Installation

To implement rotation of an image in Phimp.me,  we have implemented Horizontal Wheel View feature. It is a custom view for user input that models horizontal wheel controller. How did we include this feature using jitpack.io?

Step 1: 

The jitpack.io repository has to be added to the root build.gradle:

allprojects {
repositories {
jcenter()
maven { url "https://jitpack.io" }
}
}


Then, add the dependency to your module build.gradle:

compile 'com.github.shchurov:horizontalwheelview:0.9.5'


Sync the Gradle files to complete the installation.

Step 2: Setting Up the Layout

Horizontal Wheel View has to be added to the XML layout file as shown below:

<FrameLayout
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_weight="2">

<com.github.shchurov.horizontalwheelview.HorizontalWheelView
android:id="@+id/horizontalWheelView"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_toStartOf="@+id/rotate_apply"
android:padding="5dp"
app:activeColor="@color/accent_green"
app:normalColor="@color/black" />

</FrameLayout>


It has to be wrapped inside a Frame Layout to give weight to the view.
To display the angle by which the image has been rotated, a simple text view has to be added just above it.

<TextView
android:id="@+id/tvAngle"
android:layout_width="match_parent"
android:layout_height="0dp"
android:layout_gravity="center"
android:layout_weight="1"
android:gravity="center"
android:textColor="@color/black"
android:textSize="14sp" />

Step 3: Updating the UI

First, declare and initialise objects of HorizontalWheelView and TextView.

HorizontalWheelView horizontalWheelView = (HorizontalWheelView) findViewById(R.id.horizontalWheelView);
TextView tvAngle= (TextView) findViewById(R.id.tvAngle);

 

Second, set up listener on the HorizontalWheelView and update the UI accordingly.

horizontalWheelView.setListener(new HorizontalWheelView.Listener() {
@Override
public void onRotationChanged(double radians) {
updateText();
updateImage();
}
});


updateText()
updates the angle and updateImage() updates the image to be rotated. The following functions have been defined below:

private void updateText() {
String text = String.format(Locale.US, "%.0f°", horizontalWheelView.getDegreesAngle());
tvAngle.setText(text);
}

private void updateImage() {
int angle = (int) horizontalWheelView.getDegreesAngle();
//Code to rotate the image using the variable 'angle'
rotatePanel.rotateImage(angle);
}


rotateImage()
is a method of ‘rotatePanel’ which is an object of RotateImageView, a custom view to rotate the image.

Let us have a look at some part of the code inside RotateImageView.

private int rotateAngle;


‘rotateAngle’ is a global variable to hold the angle by which image has to be rotated.

public void rotateImage(int angle) {
rotateAngle = angle;
this.invalidate();
}


The method invalidate() is used to trigger UI refresh and every time UI is refreshed, the draw() method is called.
We have to override the draw() method and write the main code to rotate the image in it.

The draw() method is defined below:

@Override
public void draw(Canvas canvas) {
super.draw(canvas);
if (bitmap == null)
return;
maxRect.set(0, 0, getWidth(), getHeight());// The maximum bounding rectangle

calculateWrapBox();
scale = 1;
if (wrapRect.width() > getWidth()) {
scale = getWidth() / wrapRect.width();
}

canvas.save();
canvas.scale(scale, scale, canvas.getWidth() >> 1,
canvas.getHeight() >> 1);
canvas.drawRect(wrapRect, bottomPaint);
canvas.rotate(rotateAngle, canvas.getWidth() >> 1,
canvas.getHeight() >> 1);
canvas.drawBitmap(bitmap, srcRect, dstRect, null);
canvas.restore();
}

private void calculateWrapBox() {
wrapRect.set(dstRect);
matrix.reset(); // Reset matrix is ​​a unit matrix
int centerX = getWidth() >> 1;
int centerY = getHeight() >> 1;
matrix.postRotate(rotateAngle, centerX, centerY); // After the rotation angle
matrix.mapRect(wrapRect);
}

 

And here you go:

Resources

Refer to Github- Horizontal Wheel View for more functions and for a sample application.

Getting Started Developing on Phimpme Android

Phimpme is an Android app for editing photos and sharing them on social media. To participate in project start by learning how people contribute in open source, learning about the version control system Git and other tools like Codacy and Travis.

Firstly, sign up for GitHub. Secondly, find the open source projects that interest you. Now as for me I started with Phimpme. Then follow these steps:

  1. Go through the project ReadMe.md and read all the technologies and tools they are using.
  2. Now fork that repo in your account.
  3. Open the Android Studio/Other applications that are required for that project and import the project through Git.
  4. For Android Studio sync all the Gradle files and other changes and you are all done and ready for the development process.

Install the app and run it on a phone. Now explore each and every bit use this app as a tester, think about the end cases and boundary condition that will make the app ‘ANR’ (App not responding) dialog appear. Congratulations you are ready to create an issue if that is a verified and original and actually is a bug.

Next,

  • Navigate to the main repo link, you will see an issues section as follows:
  • Create a new issue and report every detail about the issue (logcat, screenshots) For eg. Refer to Issue-1120
  • Now the next step is to work on that issue
  • On your machine, you don’t have to change the code in the development branch as it’s considered to be as a bad practice. Hence checkout as a new branch.
    For eg., I checked out for the above issue as ‘crashfixed’
git checkout -b "Any branch name you want to keep"
  • Make the necessary changes to that branch and test that the code is compiling and the issue is fixed followed by
git add.
git commit -m "Fix #Issue No -Description "
git push origin branch-name
  • Now navigate to the repo and you will an option to create a Pull Request.
    Mention the Issue number and description and changes you done, include screenshots of the fixed app.For eg. Pull Request 1131.

Hence you have done your first contribution in open source while learning with git. The pull request will initiate some checks like Codacy and Travis build and then if everything works it is reviewed and merged by co-developers.

The usual way how this works is, that it should be reviewed by other co-developers. These co-developers do not need merge or write access to the repository. Any developer can review pull requests. This will also help contributors to learn about the project and make the job of core developers easier.

Resources

Automatic Signing and Publishing of Android Apps from Travis

As I discussed about preparing the apps in Play Store for automatic deployment and Google App Signing in previous blogs, in this blog, I’ll talk about how to use Travis Ci to automatically sign and publish the apps using fastlane, as well as how to upload sensitive information like signing keys and publishing JSON to the Open Source repository. This method will be used to publish the following Android Apps:

Current Project Structure

The example project I have used to set up the process has the following structure:

It’s a normal Android Project with some .travis.yml and some additional bash scripts in scripts folder. The update-apk.sh file is standard app build and repo push file found in FOSSASIA projects. The process used to develop it is documented in previous blogs. First, we’ll see how to upload our keys to the repo after encrypting them.

Encrypting keys using Travis

Travis provides a very nice documentation on encrypting files containing sensitive information, but a crucial information is buried below the page. As you’d normally want to upload two things to the repo – the app signing key, and API JSON file for release manager API of Google Play for Fastlane, you can’t do it separately by using standard file encryption command for travis as it will override the previous encrypted file’s secret. In order to do so, you need to create a tarball of all the files that need to be encrypted and encrypt that tar instead. Along with this, before you need to use the file, you’ll have to decrypt in in the travis build and also uncompress it for use.

So, first install Travis CLI tool and login using travis login (You should have right access to the repo and Travis CI in order to encrypt the files for it)

Then add the signing key and fastlane json in the scripts folder. Let’s assume the names of the files are key.jks and fastlane.json

Then, go to scripts folder and run this command to create a tar of these files:

tar cvf secrets.tar fastlane.json key.jks

 

secrets.tar will be created in the folder. Now, run this command to encrypt the file

travis encrypt-file secrets.tar

 

A new file secrets.tar.enc will be created in the folder. Now delete the original files and secrets tar so they do not get added to the repo by mistake. The output log will show the the command for decryption of the file to be added to the .travis.yml file.

Decrypting keys using Travis

But if we add it there, the keys will be decrypted for each commit on each branch. We want it to happen only for master branch as we only require publishing from that branch. So, we’ll create a bash script prep-key.sh for the task with following content

#!/bin/sh
set -e

export DEPLOY_BRANCH=${DEPLOY_BRANCH:-master}

if [ "$TRAVIS_PULL_REQUEST" != "false" -o "$TRAVIS_REPO_SLUG" != "iamareebjamal/android-test-fastlane" -o "$TRAVIS_BRANCH" != "$DEPLOY_BRANCH" ]; then
    echo "We decrypt key only for pushes to the master branch and not PRs. So, skip."
    exit 0
fi

openssl aes-256-cbc -K $encrypted_4dd7_key -iv $encrypted_4dd7_iv -in ./scripts/secrets.tar.enc -out ./scripts/secrets.tar -d
tar xvf ./scripts/secrets.tar -C scripts/

 

Of course, you’ll have to change the commands and arguments according to your need and repo. Specially, the decryption command keys ID

The script checks if the repo and branch are correct, and the commit is not of a PR, then decrypts the file and extracts them in appropriate directory

Before signing the app, you’ll need to store the keystore password, alias and key password in Travis Environment Variables. Once you have done that, you can proceed to signing the app. I’ll assume the variable names to be $STORE_PASS, $ALIAS and $KEY_PASS respectively

Signing App

Now, come to the part in upload-apk.sh script where you have the unsigned release app built. Let’s assume its name is app-release-unsigned.apk.Then run this command to sign it

cp app-release-unsigned.apk app-release-unaligned.apk
jarsigner -verbose -tsa http://timestamp.comodoca.com/rfc3161 -sigalg SHA1withRSA -digestalg SHA1 -keystore ../scripts/key.jks -storepass $STORE_PASS -keypass $KEY_PASS app-release-unaligned.apk $ALIAS

 

Then run this command to zipalign the app

${ANDROID_HOME}/build-tools/25.0.2/zipalign -v -p 4 app-release-unaligned.apk app-release.apk

 

Remember that the build tools version should be the same as the one specified in .travis.yml

This will create an apk named app-release.apk

Publishing App

This is the easiest step. First install fastlane using this command

gem install fastlane

 

Then run this command to publish the app to alpha channel on Play Store

fastlane supply --apk app-release.apk --track alpha --json_key ../scripts/fastlane.json --package_name com.iamareebjamal.fastlane

 

You can always configure the arguments according to your need. Also notice that you have to provide the package name for Fastlane to know which app to update. This can also be stored as an environment variable.

This is all for this blog, you can read more about travis CLI, fastlane features and signing process in these links below: