Marker Click Management in Android Google Map API Version 2

We could display a marker on Google map to point to a particular location. Although it is a simple task sometimes we need to customise it a bit more. Recently I customised marker displayed in Connfa app displaying the location of the sessions on the map loaded from Open Event format. In this blog manipulation related to map marker is explored.

Markers indicate single locations on the map. You can customize your markers by changing the default colour, or replace the marker icon with a custom image. Info windows can provide additional context to a marker. You can place a marker on the map by using following code.

MarkerOptions marker = new MarkerOptions().position(new LatLng(latitude, longitude)).title("Dalton Hall");
googleMap.addMarker(marker);

But as you can see this may not be enough, we need to do operations on clicking the marker too, so we define them in the Marker Click Listener. We declare marker null initially so we check if the marker colour is changed previously or not.

private Marker previousMarker = null;

We check if the marker is initialized to change its colour again to initial colour, we can do other related manipulation like changing the map title here,

Note: the first thing that happens when a marker is clicked or tapped is that any currently showing info window is closed, and the GoogleMap.OnInfoWindowCloseListener is triggered. Then the OnMarkerClickListener is triggered. Therefore, calling isInfoWindowShown() on any marker from the OnMarkerClickListener will return false.

mGoogleMap.setOnMarkerClickListener(new GoogleMap.OnMarkerClickListener() {
   @Override
   public boolean onMarkerClick(Marker marker) {
       String locAddress = marker.getTitle();
       fillTextViews(locAddress);
       if (previousMarker != null) {
           previousMarker.setIcon(BitmapDescriptorFactory.defaultMarker(BitmapDescriptorFactory.HUE_RED));
       }
       marker.setIcon(BitmapDescriptorFactory.defaultMarker(BitmapDescriptorFactory.HUE_BLUE));
       previousMarker = marker;

       return true;
   }
});

It’s possible to customize the colour of the default marker image by passing a BitmapDescriptor object to the icon() method. You can use a set of predefined colours in the BitmapDescriptorFactory object, or set a custom marker colour with the BitmapDescriptorFactory.defaultMarker(float hue) method. The hue is a value between 0 and 360, representing points on a colour wheel. We use red colour when the marker is not clicked and blue when it is clicked so a user knows which one is clicked.

To conclude you can use an OnMarkerClickListener to listen for click events on the marker. To set this listener on the map, call GoogleMap.setOnMarkerClickListener(OnMarkerClickListener). When a user clicks on a marker, onMarkerClick(Marker) will be called and the marker will be passed through as an argument. This method returns a boolean that indicates whether you have consumed the event (i.e., you want to suppress the default behaviour). If it returns false, then the default behaviour will occur in addition to your custom behaviour. The default behaviour for a marker click event is to show its info window (if available) and move the camera such that the marker is centered on the map.

The final result looks like this, so you the user can see which marker is clicked as its colour is changed,

   

 

References:

  • Google Map APIs Documentation – https://developers.google.com/maps/documentation/android-api/marker
Continue ReadingMarker Click Management in Android Google Map API Version 2

Keeping Order of tickets in Event Wizard in Sync with API on Open Event Frontend

This blog article will illustrate how the various tickets are stored and displayed in order the event organiser decides  on  Open Event Frontend and also, how they are kept in sync with the backend.

First we will take a look at how the user is able to control the order of the tickets using the ticket widget.

{{#each tickets as |ticket index|}}
  {{widgets/forms/ticket-input ticket=ticket
  timezone=data.event.timezone
  canMoveUp=(not-eq index 0)
  canMoveDown=(not-eq ticket.position (dec
  data.event.tickets.length))
  moveTicketUp=(action 'moveTicket' ticket 'up')
  moveTicketDown=(action 'moveTicket' ticket 'down')
  removeTicket=(confirm 'Are you sure you  wish to delete this 
  ticket ?' (action 'removeTicket' ticket))}}
{{/each}}

The canMoveUp and canMoveDown are dynamic properties and are dependent upon the current positions of the tickets in the tickets array.  These properties define whether the up or down arraow or both should be visible alongside the ticket to trigger the moveTicket action.

There is an attribute called position in the ticket model which is responsible for storing the position of the ticket on the backend. Hence it is necessary that the list of the ticket available should always be ordered by position. However, it should be kept in mind, that even if the position attribute of the tickers is changed, it will not actually change the indices of the ticket records in the array fetched from the API. And since we want the ticker order in sync with the backend, i.e. user shouldn’t have to refresh to see the changes in ticket order, we are going to return the tickets via a computed function which sorts them in the required order.

tickets: computed('data.event.tickets.@each.isDeleted', 'data.event.tickets.@each.position', function() {
   return this.get('data.event.tickets').sortBy('position').filterBy('isDeleted', false);
 })

The sortBy method ensures that the tickets are always ordered and this computed property thus watches the position of each of the tickets to look out for any changes. Now we can finally define the moveTicket action to enable modification of position for tickets.

moveTicket(ticket, direction) {
     const index = ticket.get('position');
     const otherTicket = this.get('data.event.tickets').find(otherTicket => otherTicket.get('position') === (direction === 'up' ? (index - 1) : (index + 1)));
     otherTicket.set('position', index);
     ticket.set('position', direction === 'up' ? (index - 1) : (index + 1));
   }

The moveTicket action takes two arguments, ticket and direction. It temporarily stores the position of the current ticket and the position of the ticket which needs to be swapped with the current ticket.Based on the direction the positions are swapped. Since the position of each of the tickets is being watched by the tickets computed array, the change in order becomes apparent immediately.

Now when the User will trigger the save request, the positions of each of the tickets will be updated via a PATCH or POST (if the ticket is new) request.

Also, the positions of all the tickets maybe affected while adding a new ticket or deleting an existing one. In case of a new ticket, the position of the new ticket should be initialised while creating it and it should be below all the other tickets.

addTicket(type, position) {
     const salesStartDateTime = moment();
     const salesEndDateTime = this.get('data.event.startsAt');
     this.get('data.event.tickets').pushObject(this.store.createRecord('ticket', {
       type,
       position,
       salesStartsAt : salesStartDateTime,
       salesEndsAt   : salesEndDateTime
     }));
   }

Deleting a ticket requires updating positions of all the tickets below the deleted ticket. All of the positions need to be shifted one place up.

removeTicket(deleteTicket) {
     const index = deleteTicket.get('position');
     this.get('data.event.tickets').forEach(ticket => {
       if (ticket.get('position') > index) {
         ticket.set('position', ticket.get('position') - 1);
       }
     });
     deleteTicket.deleteRecord();
   }

The tickets whose position is to be updated are filtered by comparison of their position from the position of the deleted ticket.

Resources

Continue ReadingKeeping Order of tickets in Event Wizard in Sync with API on Open Event Frontend

Updating the UI of the generator form in Open Event Webapp

  • Add a pop-up menu bar similar to the one shown in Google/Susper6be8d972-72bc-4e12-b27a-219e46608cfc.png
  • Add a version deployment link at the bottom of the page like the one shown in staging.loklak.org.

29072668-b1db-4ef5-8865-c71ef2438433.png

 

  • Implementing the top-bar and the pop-up menu bar

The first task was to introduce a top-bar and a pop-up menu bar in Generator. The top-bar would contain the text Open Event Webapp Generator and an icon button on the right side of it which would show a pop-up menu. The pop-up menu would contain a number of icons which would link to different pages like FOSSASIA blogs and it’s official website, different projects like loklak, SUSI and Eventyay and also to the Webapp Project Readme and issues page.

Creating a top navbar is easy but the pop-up menu is a comparatively tougher. The first step was to gather the gather the small images of the different services. Since this feature had already been implemented in Susper project, we just copied all the icon images from there and copy it into a folder named icons in the open event webapp. Then we create a custom menu div which would hold all the different icons and present it an aesthetic manner. Write the HTML code for the menu and then CSS to decorate and position it! Also, we have to create a click event handler on the pop-up menu button for toggling the menu on and off.

Here is an excerpt of the code. The whole file can be seen here

<div class="custom-navbar">
 <a href='.' class="custom-navtitle">
   <strong>Open Event Webapp Generator</strong> <!-- Navbar Title -->
 </a>
 <div class="custom-menubutton">
   <i class="glyphicon glyphicon-th"></i> <!-- Pop-up Menu button -->
 </div>
 <div class="custom-menu"> <!-- Custom pop-up menu containing different links -->
   <div class="custom-menu-item">
     <a class="custom-icon" href="http://github.com/fossasia/open-event-webapp" target="_blank"><img src="./icons/code.png">
       <p class="custom-title">Code</p></a>
   </div>
   <!-- Code for other links to different projects-->
 </div>
</div>

Here is a screenshot of how the top-bar and the pop-up menu looks!

bb82ba88-4317-46b0-91ec-514499c5cfde.png

  • Adding version deployment info to the bottom

The next task was to add a footer to the page which would contain the version deployment info. The user can click on that link and we can then be taken to the latest version of the code which is currently deployed.

To show the version info, we make use of the Github API. We need to get the hash of the latest commit made on the development branch. We send an API request to the Github requesting for the latest hash and then dynamically add the info and the link received to the footer. The user can then click on that link and will be taken to the latest deployment page of the webapp!

var apiUrl = "https://api.github.com/repos/fossasia/open-event-webapp/git/refs/heads/development";
$.ajax({url: apiUrl, success: function(result){
 var version = result['object']['sha'];
 var versionLink = 'https://github.com/fossasia/open-event-webapp/tree/' + version;
 var deployLink = $('#deploy-link');
 deployLink.attr('href', versionLink);
 deployLink.html(version);
}});

This is how the footer looks after the API Response

44385ad8-e094-490b-8575-a47932aa75c5.png

References:

Continue ReadingUpdating the UI of the generator form in Open Event Webapp

Implementing Version Control System for SUSI Skill CMS

SUSI Skill CMS now has a version control system where users can browse through all the previous revisions of a skill and roll back to a selected version. Users can modify existing skills and push the changes. So a skill could have been edited many times by the same or different users and so have many revisions. The version control functionalities help users to :

  • Browse through all the revisions of a selected skill
  • View the content of a selected revision
  • Compare any two selected revisions highlighting the changes
  • Option to edit and rollback to a selected revision.

Let us visit SUSI Skill CMS and try it out.

  1. Select a skill
  2. Click on versions button
  3. A table populated with previous revisions is displayed

  1. Clicking on a single revision opens the content of that version
  2. Selecting 2 versions and clicking on compare selected versions loads the content of the 2 selected revisions and shows the differences between the two.
  3. Clicking on Undo loads the selected revision and the latest version of that skill, highlighting the differences and also an editor loaded with the code of the selected revision to make changes and save to roll back.

How was this implemented?

Firstly, to get the previous revisions of a selected skill, we need the skills meta data including model, group, language and skill name which is used to make an ajax call to the server using the endpoint :

http://api.susi.ai/cms/getSkillHistory.json?model=MODEL&group=GROUP&language=LANGUAGE&skill=SKILL_NAME

We create a new component SkillVersion and pass the skill meta data in the pathname while accessing that component. The path where SkillVersion component is loaded is /:category/:skill/versions/:lang . We parse this data from the path and set our state with skill meta data. In componentDidMount we use this data to make the ajax call to the server to get all previous version data and update our state. A sample response from getSkillHistory endpoint looks like :

{
  "session": {
    "identity": {
      "type": "",
      "name": "",
      "anonymous":
    }
  },
  "commits": [
    {
      "commitRev": "",
      "author_mail": "AUTHOR_MAIL_ID",
      "author": "AUTOR_NAME",
      "commitID": "COMMIT_ID",
      "commit_message": "COMMIT_MESSAGE",
     "commitName": "COMMIT_NAME",
     "commitDate": "COMMIT_DATE"
    },
  ],
  "accepted": TRUE/FALSE
}

We now populate the table with the obtained revision history. We used Material UI Table for tabulating the data. The first 2 columns of the table have radio buttons to select any 2 revisions. The left side radio buttons are for selecting the older versions and the right side radio buttons to select the more recent versions. We keep track of the selected versions through onCheck function of the radio buttons and updating state accordingly.

if(side === 'right'){
  if(!(index >= currLeft)){
    rightChecks.fill(false);
    rightChecks[index] = true;
    currRight = index;
  }
}
else if(side === 'left'){
  if(!(index <= currRight)){
    leftChecks.fill(false);
    leftChecks[index] = true;
    currLeft = index;
  }
}
this.setState({
  currLeftChecked: currLeft,
  currRightChecked: currRight,
  leftChecks: leftChecks,
  rightChecks: rightChecks,
});

Once 2 versions are selected and we click on compare selected versions button, we get the currently selected versions stored from getCheckedCommits function and we are redirected to /:category/:skill/compare/:lang/:oldid/:recentid where we pass the selected 2 revisions commitIDs in the URL.

{(this.state.commitsChecked.length === 2) &&
<Link to={{
  pathname: '/'+this.state.skillMeta.groupValue+
            '/'+this.state.skillMeta.skillName+
            '/compare/'+this.state.skillMeta.languageValue+
            '/'+checkedCommits[0].commitID+
            '/'+checkedCommits[1].commitID,
}}>
  <RaisedButton
    label='Compare Selected Versions'
    backgroundColor='#4285f4'
    labelColor='#fff'
    style={compareBtnStyle}
  />
</Link>
}

SkillHistory Component is now loaded and the 2 selected revisions commitIDs are parsed from the URL pathname. Once we have the commitIDs we make ajax calls to the server to get the code for that particular commit. The skill meta data is also parsed from the URL path which is required to make the server call to getFileAtCommitID.

http://api.susi.ai/cms/getSkillHistory.json?model=MODEL&group=GROUP&language=LANGUAGE&skill=SKILL_NAME&commitID=COMMIT_ID

We make the ajax calls in componentDidMount and update the state with the received data. A sample response from getFileAtCommitID looks like :

{
  "accepted": TRUE/FALSE,
  "file": "CONTENT",
  "session": {
    "identity": {
       "type": "",
       "name": "",
       "anonymous":
    }
  }
}

We populate the code of each revision in an editor. We used react-ace as our editor component where we use the value prop to populate the content and display it in read-only mode.

<AceEditor
  mode='java'
  readOnly={true}
  theme={this.state.editorTheme}
  width='100%'
  fontSize={this.state.fontSizeCode}
  height= '400px'
  value={this.state.commitData[0].code}
  showPrintMargin={false}
  name='skill_code_editor'
  editorProps={{$blockScrolling: true}}
/>

We then show the differences between the 2 selected versions content. To compare and highlight the differences, we used react-diff package which takes in the content of both the commits as inputA and inputB props and we compare character by character using the type chars prop. Here input A is compared with input B. The component compares and returns the highlighted element which we display in a scrollable div preventing overflows.

{/* latest code should be inputB */}
<Diff
  inputA={this.state.commitData[0].code}
  inputB={this.state.commitData[1].code}
  type='chars'
/>

Clicking on Undo then redirects to /:category/:skill/edit/:lang/:latestid/:revertid where latest id is the commitID of the latest revision and revert id is the commitID of the oldest commit ID selected amongst the 2 commits selected initially. This redirects to SkillRollBack component where we again parse the skill meta data and the commit IDs from the URL pathname and call getFileAtCommitID to get the content for the latest and the reverting commit and again populate the content in editor using react-ace and also show the differences using react-diff and finally load the modify skill component where an editor is preloaded with the content of the reverting commit and a similar interface like modify skill is shown where user can edit the content of the reverting commit and push the changes.

let baseUrl = this.getSkillAtCommitIDUrl() ;
let self = this;
var url1 = baseUrl + self.state.latestCommit;
$.ajax({
  url: url1,
  jsonpCallback: 'pc',
  dataType: 'jsonp',
  jsonp: 'callback',
  crossDomain: true,
  success: function (data1) {
    var url2 = baseUrl + self.state.revertingCommit;
    $.ajax({
      url: url2,
      jsonpCallback: 'pd',
      dataType: 'jsonp',
      jsonp: 'callback',
      crossDomain: true,
      success: function (data2) {
        self.updateData([{
        code:data1.file,
        commitID:self.state.latestCommit,
      },{
        code:data2.file,
        commitID:self.state.revertingCommit,
      }])
      }
    });
  }
});

Here, we make nested ajax calls to maintain synchronization and update state after we receive data from both the calls else if we make ajax calls in a loop, then the second ajax call doesn’t wait for the first one to finish and is most likely to fail.

This is how the skill version system was implemented in SUSI Skill CMS. You can find the complete code at SUSI Skill CMS Repository. Feel free to contribute.

Resources:

Continue ReadingImplementing Version Control System for SUSI Skill CMS

Implementing Order Statistics API on Tickets Route in Open Event Frontend

The order statistics API endpoints are used to display the statistics related to tickets, orders, and sales. It contains the details about the total number of orders, the total number of tickets sold and the amount of the sales. It also gives the detailed information about the pending, expired, placed and completed orders, tickets, and sales.

This article will illustrate how the order statistics can be displayed using the Order Statistics API in Open Event Frontend. The primary end point of Open Event API with which we are concerned with for statistics is

GET /v1/events/{event_identifier}/order-statistics

First, we need to create a model for the order statistics, which will have the fields corresponding to the API, so we proceed with the ember CLI command:

ember g model order-statistics-tickets

Next, we need to define the model according to the requirements. The model needs to extend the base model class. The code for the model looks like this:

import attr from 'ember-data/attr';
import ModelBase from 'open-event-frontend/models/base';

export default ModelBase.extend({
  orders  : attr(),
  tickets : attr(),
  sales   : attr()
});

As we need to display the statistics related to orders, tickets, and sales so we have their respective variables inside the model which will fetch and store the details from the API.

Now, after creating a model, we need to make an API call to get the details. This can be done using the following:

return this.modelFor('events.view').query('orderStatistics', {});

Since the tickets route is nested inside the event.view route so, first we are getting the model for event.view route and then we’re querying order statistics from the model.

The complete code can be seen here.

Now, we need to call the model inside the template file to display the details. To fetch the total orders we can write like this

{{model.orders.total}}

 

In a similar way, the total sales can be displayed like this.

{{model.sales.total}}

 

And total tickets can be displayed like this

{{model.tickets.total}}

 

If we want to fetch other details like the pending sales or completed orders then the only thing we need to replace is the total attribute. In place of total, we can add any other attribute depending on the requirement. The complete code of the template can be seen here.

The UI for the order statistics on the tickets route looks like this.

Fig. 1: The user interface for displaying the statistics

The complete source code can be seen here.

Resources:

Continue ReadingImplementing Order Statistics API on Tickets Route in Open Event Frontend

Implementing Pages API in Open Event Frontend

The pages endpoints are used to create static pages which such as about page or any other page that doesn’t need to be updated frequently and only a specific content is to be shown. This article will illustrate how the pages can be added or removed from the /admin/content/pages route using the pages API in Open Event Frontend. The primary end point of Open Event API with which we are concerned with for pages is

GET /v1/pages

First, we need to create a model for the pages, which will have the fields corresponding to the API, so we proceed with the ember CLI command:

ember g model page

Next, we need to define the model according to the requirements. The model needs to extend the base model class. The code for the page model looks like this:

import attr from 'ember-data/attr';
import ModelBase from 'open-event-frontend/models/base';

export default ModelBase.extend({
  name        : attr('string'),
  title       : attr('string'),
  url         : attr('string'),
  description : attr('string'),
  language    : attr('string'),
  index       : attr('number', { defaultValue: 0 }),
  place       : attr('string')
});

As the page will have name, title, url which will tell the URL of the page, the language, the description, index and the place of the page where it has to be which can be either a footer or an event.

The complete code for the model can be seen here.

Now, after creating a model, we need to make an API call to get and post the pages created. This can be done using the following:

return this.get('store').findAll('page');

The above line will check the store and find all the pages which have been cached in and if there is no record found then it will make an API call and cache the records in the store so that when called it can return it immediately.

Since in the case of pages we have multiple options like creating a new page, updating a new page, deleting an existing page etc. For creating and updating the page we have a form which has the fields required by the API to create the page.  The UI of the form looks like this.

Fig. 1: The user interface of the form used to create the page.

Fig. 2: The user interface of the form used to update and delete the already existing page

The code for the above form can be seen here.

Now, if we click the items which are present in the sidebar on the left, it enables us to edit and update the page by displaying the information stored in the form and then the details be later updated on the server by clicking the Update button. If we want to delete the form we can do so using the delete button which first shows a pop up to confirm whether we actually want to delete it or not. The code for displaying the delete confirmation pop up looks like this.

<button class="ui red button" 
{{action (confirm (t 'Are you sure you would like to delete this page?') (action 'deletePage' data))}}>
{{t 'Delete'}}</button>

 

The code to delete the page looks like this

deletePage(data) {
    if (!this.get('isCreate')) {
      data.destroyRecord();
      this.set('isFormOpen', false);
    }
  }

In the above piece of code, we’re checking whether the form is in create mode or update mode and if it’s in create mode then we can destroy the record and then close the form.

The UI for the pop up looks like this.

Fig.3: The user interface for delete confirmation pop up

The code for the entire process of page creation to deletion can be checked here

To conclude, this is how we efficiently do the process of page creation, updating and deletion using the Open-Event-Orga pages API  ensuring that there is no unnecessary API call to fetch the data and no code duplication.

Resources:

Continue ReadingImplementing Pages API in Open Event Frontend

Implementing Event Copy API in Open Event Frontend

In Open Event Frontend, we give the organizer a facility to create a copy of the event by copying it and making the modifications he wants to a particular event. Thus, it is easy for the organizer to create multiple events with same sponsors, sessions, etc. For this, we implemented the event copy API in frontend.
We achieved the copy of events as follows:
Since the event copy API is application/json type, we used the simple GET and POST requests to copy the event rather than using the ember data. For this, we use the loader service which is injected throughout the app. To copy the event we have given a “Copy” button which looks as follows:

 <button class="ui button {{if isCopying 'loading'}}" {{action 'copyEvent'}} disabled={{isCopying}}>
    <i class="copy icon"></i>
        {{t 'Copy'}}
 </button>

Thus, we trigger an action ‘copyEvent’ on clicking the Copy button. The action is defined in controller as follows:

 copyEvent() {
      this.set('isCopying', true);
      this.get('loader')
        .post(`events/${this.get('model.id')}/copy`, {})
        .then(copiedEvent => {
          this.transitionToRoute('events.view.edit', copiedEvent.identifier);
          this.get('notify').success(this.l10n.t('Event copied successfully'));
        })
        .catch(() => {
          this.get('notify').error(this.l10n.t('Copying of event failed'));
        })
        .finally(() => {
          this.set('isCopying', false);
        });
    }

The endpoint to copy the event as defined in our API is:

POST : /v1/events/{identifier}/copy
Content-Type: application/vnd.api+json
Authorization: JWT <Auth Key>
Request body: {}

Thus, we make a post request to the given URL by passing the event id of the event to be copied and the request body to be an empty object. Thus, on successful response from the server, we get the new event id for which the event info is same. We then redirect the user to the edit details route where he can change the info he wants.
Thus, we copy the event in Open Event Frontend.

Resources: Docs on loader service in Ember JS

Continue ReadingImplementing Event Copy API in Open Event Frontend

Using Android Palette with Glide in Open Event Organizer Android App

Open Event Organizer is an Android Application for the Event Organizers and Entry Managers. The core feature of the App is to scan a QR code from the ticket to validate an attendee’s check in. Other features of the App are to display an overview of sales, ticket management and basic editing in the Event Details. Open Event API Server acts as a backend for this App. The App uses Navigation Drawer for navigation in the App. The side drawer contains menus, event name, event start date and event image in the header. Event name and date is shown just below the event image in a palette. For a better visibility Android Palette is used which extracts prominent colors from images. The App uses Glide to handle image loading hence GlidePalette library is used for palette generation which integrates Android Palette with Glide. I will be talking about the implementation of GlidePalette in the App in this blog.

The App uses Data Binding so the image URLs are directly passed to the XML views in the layouts and the image loading logic is implemented in the BindingAdapter class. The image loading code looks like:

GlideApp
   .with(imageView.getContext())
   .load(Uri.parse(url))
   ...
   .into(imageView);

 

So as to implement palette generation for event detail label, it has to be implemented with the event image loading. GlideApp takes request listener which implements methods on success and failure where palette can be generated using the bitmap loaded. With GlidePalette most of this part is covered in the library itself. It provides GlidePalette class which is a sub class of GlideApp request listener which is passed to the GlideApp using the method listener. In the App, BindingAdapter has a method named bindImageWithPalette which takes a view container, image url, a placeholder drawable and the ids of imageview and palette. The relevant code is:

@BindingAdapter(value = {"paletteImageUrl", "placeholder", "imageId", "paletteId"}, requireAll = false)
public static void bindImageWithPalette(View container, String url, Drawable drawable, int imageId, int paletteId) {
   ImageView imageView = (ImageView) container.findViewById(imageId);
   ViewGroup palette = (ViewGroup) container.findViewById(paletteId);

   if (TextUtils.isEmpty(url)) {
       if (drawable != null)
           imageView.setImageDrawable(drawable);
       palette.setBackgroundColor(container.getResources().getColor(R.color.grey_600));
       for (int i = 0; i < palette.getChildCount(); i++) {
           View child = palette.getChildAt(i);
           if (child instanceof TextView)
               ((TextView) child).setTextColor(Color.WHITE);
       }
       return;
   }
   GlidePalette<Drawable> glidePalette = GlidePalette.with(url)
       .use(GlidePalette.Profile.MUTED)
       .intoBackground(palette)
       .crossfade(true);

   for (int i = 0; i < palette.getChildCount(); i++) {
       View child = palette.getChildAt(i);
       if (child instanceof TextView)
           glidePalette
               .intoTextColor((TextView) child, GlidePalette.Swatch.TITLE_TEXT_COLOR);
   }
   setGlideImage(imageView, url, drawable, null, glidePalette);
}

 

The code is pretty obvious. The method checks passed URL for nullability. If null, it sets the placeholder drawable to the image view and default colors to the text views and the palette. The GlidePalette object is generated using the initializer method with which takes the image URL. The request is passed to the method setGlideImage which loads the image and passes the GlidePalette to the GlideApp as a listener. Accordingly, the palette is generated and the colors are set to the label and text views accordingly. The container view in the XML layout looks like:

<LinearLayout
   android:layout_width="match_parent"
   android:layout_height="wrap_content"
   android:orientation="vertical"
   app:paletteImageUrl="@{ event.largeImageUrl }"
   app:placeholder="@{ @drawable/header }"
   app:imageId="@{ R.id.image }"
   app:paletteId="@{ R.id.eventDetailPalette }">

 

Links:
1. Documentation for Glide Image Loading Library
2. GlidePalette Github Repository
3. Android Palette Official Documentation

Continue ReadingUsing Android Palette with Glide in Open Event Organizer Android App

Making App Name Configurable for Open Event Organizer App

Open Event Organizer is a client side android application of Open Event API server created for event organizers and entry managers. The application provides a way to configure the app name via environment variable app_name. This allows the user to change the app name just by setting the environment variable app_name to the new name. I will be talking about its implementation in the application in this blog.

Generally, in an android application, the app name is stored as a static string resource and set in the manifest file by referencing to it. In the Organizer application, the app name variable is defined in the app’s gradle file. It is assigned to the value of environment variable app_name and the default value is assigned if the variable is null. The relevant code in the manifest file is:

def app_name = System.getenv('app_name') ?: "eventyay organizer"

app/build.gradle

The default value of app_name is kept, eventyay organizer. This is the app name when the user doesn’t set environment variable app_name. To reference the variable from the gradle file into the manifest, manifestPlaceholders are defined in the gradle’s defaultConfig. It is a map of key value pairs. The relevant code is:

defaultConfig {
   ...
   ...
   manifestPlaceholders = [appName: app_name]
}

app/build.gradle

This makes appName available for use in the app manifest. In the manifest file, app name is assigned to the appName set in the gradle.

<application
   ...
   ...
   android:label="${appName}"

app/src/main/AndroidManifest.xml

By this, the application name is made configurable from the environment variable.

Links:
1. ManifestPlaceholders documentation
2. Stackoverflow answer about getting environment variable in gradle

Continue ReadingMaking App Name Configurable for Open Event Organizer App

Adding Number of Sessions Label in Open Event Android App

The Open Event Android project has a fragment for showing tracks of the event. The Tracks Fragment shows the list of all the Tracks with title and TextDrawable. But currently it is not showing how many sessions particular track has. Adding TextView with rounded corner and colored background showing number of sessions for track gives great UI. In this post I explain how to add TextView with rounded corner and how to use Plurals in Android.

1. Create Drawable for background

Firstly create track_rounded_corner.xml Shape Drawable which will be used as a background of the TextView. The <shape> element must be the root element of Shape drawable. The android:shape attribute defines the type of the shape. It can be rectangle, ring, oval, line. In our case we will use rectangle.

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
    android:shape="rectangle">

    <corners android:radius="360dp" />

    <padding
        android:bottom="2dp"
        android:left="8dp"
        android:right="8dp"
        android:top="2dp" />
</shape>

 

Here the <corners> element creates rounded corners for the shape with the specified value of radius attribute. This tag is only applied when the shape is a rectangle. The <padding> element adds padding to the containing view. You can modify the value of the padding as per your need. You can feel shape with appropriate color using <solid> as we are setting color dynamically we will not set color here.

2. Add TextView and set Drawable

Now add TextView in the track list item which will contain number of sessions text. Set  track_rounded_corner.xml drawable we created before as background of this TextView using background attribute.

<TextView
        android:id="@+id/no_of_sessions"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:background="@drawable/track_rounded_corner"
        android:textColor="@color/white"
        android:textSize="@dimen/text_size_small"/>

 

Set color and text size according to your need. Here don’t add padding in the TextView because we have already added padding in the Drawable. Adding padding in the TextView will override the value specified in the drawable.

3.  Create TextView object in ViewHolder

Now create TextView object noOfSessions and bind it with R.id.no_of_sessions using ButterKnife.bind() method.

public class TrackViewHolder extends RecyclerView.ViewHolder {
    ...

    @BindView(R.id.no_of_sessions)
    TextView noOfSessions;

    private Track track;

    public TrackViewHolder(View itemView, Context context) {
        super(itemView);
        ButterKnife.bind(this, itemView);

    public void bindTrack(Track track) {
        this.track = track;
        ...
    }   
}

 

Here TrackViewHolder is a RecycleriewHolder for the TracksListAdapter. The bindTrack() method of this view holder is used to bind Track with ViewHolder.

4.  Add Quantity Strings (Plurals) for Sessions

Now we want to set the value of TextView. Here if the number of sessions of the track is zero or more than one then we need to set text  “0 sessions” or “2 sessions”. If the track has only one session than we need to set text “1 session” to make text meaningful. In android we have Quantity Strings which can be used to make this task easy.

<resources>
    <!--Quantity Strings(Plurals) for sessions-->
    <plurals name="sessions">
        <item quantity="zero">No sessions</item>
        <item quantity="one">1 session</item>
        <item quantity="other">%d sessions</item>
    </plurals>
</resources>

 

Using this plurals resource we can get appropriate string for specified quantity like “zero”, “one” and  “other” will return “No sessions”, “1 session”, and “2 sessions”. accordingly. 2 can be any value other than 0 and 1.

Now let’s set background color and test for the text view.

int trackColor = Color.parseColor(track.getColor());
int sessions = track.getSessions().size();

noOfSessions.getBackground().setColorFilter(trackColor, PorterDuff.Mode.SRC_ATOP);
noOfSessions.setText(context.getResources().getQuantityString(R.plurals.sessions,
                sessions, sessions));

 

Here we are setting background color of textview using getbackground().setColorFilter() method. To set appropriate text we are using getQuantityString() method which takes plural resource and quantity(in our case no of sessions) as parameters.

Now we are all set. Run the app it will look like this.

Conclusion

Adding TextView with rounded corner and colored background in the App gives great UI and UX. To know more about Rounded corner TextView and Quantity Strings follow the links given below.

Continue ReadingAdding Number of Sessions Label in Open Event Android App