Open Event Server – Export Event as a Pentabarf XML File

FOSSASIA‘s Open Event Server is the REST API backend for the event management platform, Open Event. Here, the event organizers can create their events, add tickets for it and manage all aspects from the schedule to the speakers. Also, once he makes his event public, others can view it and buy tickets if interested.

To make event promotion easier, we also provide the event organizer to export his event as a Pentabarf XML file. Pentabarf XML is used to store events/conferences in a format which most of the scheduling applications can read and add that particular event/conference to the user’s schedule.

Server side – generating the Pentabarf XML file

Here we will be using the pentabarf package for Python for parsing and creating the file.

from pentabarf.Conference import Conference
from pentabarf.Day import Day
from pentabarf.Event import Event
from pentabarf.Person import Person
from pentabarf.Room import Room
  • We define a class PentabarfExporter which has a static method export(event_id).
  • Query the event using the event_id passed and start forming the event in the required format:
event = EventModel.query.get(event_id)
diff = (event.ends_at - event.starts_at)

conference = Conference(title=event.name, start=event.starts_at, end=event.ends_at,
                       days=diff.days if diff.days > 0 else 1,
                       day_change="00:00", timeslot_duration="00:15",
                       venue=event.location_name)
dates = (db.session.query(cast(Session.starts_at, DATE))
        .filter_by(event_id=event_id)
        .filter_by(state='accepted')
        .filter(Session.deleted_at.is_(None))
        .order_by(asc(Session.starts_at)).distinct().all())
  • We have queried for the dates of the event and saved it in dates.
  • We will now iterate over each date and query the microlocations who have a session on that particular date.
for date in dates:
   date = date[0]
   day = Day(date=date)
   microlocation_ids = list(db.session.query(Session.microlocation_id)
                            .filter(func.date(Session.starts_at) == date)
                            .filter_by(state='accepted')
                            .filter(Session.deleted_at.is_(None))
                            .order_by(asc(Session.microlocation_id)).distinct())
  • For each microlocation thus obtained, we will query for accepted sessions to be held at those microlocations.
  • We will also initialize a Room for each microlocation.
for microlocation_id in microlocation_ids:
   microlocation_id = microlocation_id[0]
   microlocation = Microlocation.query.get(microlocation_id)
   sessions = Session.query.filter_by(microlocation_id=microlocation_id) \
       .filter(func.date(Session.starts_at) == date) \
       .filter_by(state='accepted') \
       .filter(Session.deleted_at.is_(None)) \
       .order_by(asc(Session.starts_at)).all()

   room = Room(name=microlocation.name)
  • We will now iterate over the aabove-obtained sessions and instantiate an Event for each session.
  • Then we will iterate over all the speakers of that session and instantiate a Person for each speaker.
  • Finally, we will add that Event to the Room we created earlier.
for session in sessions:

   session_event = Event(id=session.id,
                         date=session.starts_at,
                         start=session.starts_at,
                         duration=str(session.ends_at - session.starts_at) + "00:00",
                         track=session.track.name,
                         abstract=session.short_abstract,
                         title=session.title,
                         type='Talk',
                         description=session.long_abstract,
                         conf_url=url_for('event_detail.display_event_detail_home',
                                          identifier=event.identifier),
                         full_conf_url=url_for('event_detail.display_event_detail_home',
                                               identifier=event.identifier, _external=True),
                         released="True" if event.schedule_published_on else "False")

   for speaker in session.speakers:
       person = Person(id=speaker.id, name=speaker.name)
       session_event.add_person(person)

   room.add_event(session_event)
  • Then we will add the room to the day and then add each day to the conference.
day.add_room(room)
conference.add_day(day)
  • Finally, we will call the generate method of the conference to generate the XML file. This can be directly written to the file.
return conference.generate("Generated by " + get_settings()['app_name'])

Obtaining the Pentabarf XML file:

Firstly, we have an API endpoint which starts the task on the server.

GET - /v1/events/{event_identifier}/export/pentabarf

Here, event_identifier is the unique ID of the event. This endpoint starts a celery task on the server to export the event as a Pentabarf XML file. It returns the task of the URL to get the status of the export task. A sample response is as follows:

{
  "task_url": "/v1/tasks/b7ca7088-876e-4c29-a0ee-b8029a64849a"
}

The user can go to the above-returned URL and check the status of his Celery task. If the task completed successfully he will get the download URL. The endpoint to check the status of the task is:

and the corresponding response from the server –

{
  "result": {
    "download_url": "/v1/events/1/exports/http://localhost/static/media/exports/1/zip/OGpMM0w2RH/event1.zip"
  },
  "state": "SUCCESS"
}

The file can be downloaded from the above-mentioned URL.

Hence, now the event can be added to any scheduling app which recognizes the Pentabarf XML format.

References

Stripe Authorization in Open Event Server

Stripe is a popular software platform for online payments. Since Open Event  allows the event organizers to sell tickets, an option to accept payments through Stripe is extremely beneficial to the organizer. Stripe allows accepting payments on other’s behalf using Connect. Connect is the Stripe’s full stack solution for platforms that need to process payments and process to multiple parties. This blog post goes over how Event organizers are able to link their Stripe accounts in order to accept payments later.

Registering the platform

The Admin of the Open Event Server will create an account on Stripe and register the platform. Upon creating the  account he/she will get a secret_key and publishable_key.  Moreover on registering the platform a client_id will be provided. These keys are saved in the application settings and only the Admin is authorized to view or change them.

Connecting the Organiser’s account

The Open Event Frontend has a wizard for creating an Event. It provides the organiser an option to connect his/her Stripe account in order to accept payments.

Upon clicking the following button, the organiser is directed to Stripe where he/she can fill the required details.  

The button directs the organizer to the following URL:

https://connect.stripe.com/oauth/authorize?response_type=code&client_id=client_id&scope=read_write&redirect_uri=redirect_uri 

The above URL has the following parameters:

  • client_id – The client ID acquired when registering your platform.required.
  • response_type – Response type. The value is always code. required.
  • redirect_uri – The URL to redirect the customer to after authorization.
  • scope – We need it to be read_write in order to be able to charge on behalf of the customer later.

After successfully entering the required details, the organizer is redirected to the redirect_url as specified in the above URL with a query parameter named as authorization_code. The Frontend sends this code to the Server using the Stripe Authorization endpoint which will be discussed in detail below.

Fetching Tokens from Stripe

The Server accepts the authorization_code by exposing the Stripe Authorization endpoint. It then uses it to fetch organizer’s details and token from Stripe and stores it for future use.

The schema for Stripe Authorization is extremely simple. We require the client to send an authorization_code which will be used to fetch the details. Stripe_publishable_key of the event organizer is exposed via the endpoint and will be used by the Frontend later.

class StripeAuthorizationSchema(Schema):
    """
        Stripe Authorization Schema
    """

    class Meta:
        """
        Meta class for StripeAuthorization Api Schema
        """
        type_ = 'stripe-authorization'
        self_view = 'v1.stripe_authorization_detail'
        self_view_kwargs = {'id': '<id>'}
        inflect = dasherize

    id = fields.Str(dump_only=True)
    stripe_publishable_key = fields.Str(dump_only=True)
    stripe_auth_code = fields.Str(load_only=True, required=True)

    event = Relationship(attribute='event',
                self_view='v1.stripe_authorization_event',
                self_view_kwargs={'id': '<id>'},
                related_view='v1.event_detail',
                related_view_kwargs={'stripe_authorization_id':                      '<id>'},
                schema="EventSchema",
                type_='event')

We use the Requests library in order to fetch the results. First we fetch the client_id that we had stored in the application settings using a helper method called get_credentials. We then use it along with the authorization_code in order to make a POST request to Stripe Connect API. The full method is given below for reference.

@staticmethod
def get_event_organizer_credentials_from_stripe(stripe_auth_code):
        """
        Uses the stripe_auth_code to get the other credentials for the event organizer's stripe account
        :param stripe_auth_code: stripe authorization code
        :return: response from stripe
        """
        credentials = StripePaymentsManager.get_credentials()

        if not credentials:
            raise Exception('Stripe is incorrectly configured')

        data = {
            'client_secret': credentials['SECRET_KEY'],
            'code': stripe_auth_code,
            'grant_type': 'authorization_code'
        }

        response = requests.post('https://connect.stripe.com/oauth/token', data=data)
        return json.loads(response.text)

We call the above method before creating the object using the before_create_object method of Marshmallow which allows us to do data preprocessing and validations.

If the request was a success, the response from Stripe connect API includes all the details necessary to accept payments on their behalf. We add these fields to the data and save it in the database.

{
  "token_type": "bearer",
  "stripe_publishable_key": PUBLISHABLE_KEY,
  "scope": "read_write",
  "livemode": false,
  "stripe_user_id": USER_ID,
  "refresh_token": REFRESH_TOKEN,
  "access_token": ACCESS_TOKEN
}

In case there was an error, an error_description would be returned. This error_description is sent back to the frontend and shown to the event organizer.

{
  "error": "invalid_grant",
  "error_description": "Authorization code already used:                                               
                        AUTHORIZATION_CODE"
}

After successfully fetching the results, we save it inside the database and return the stripe_publishable_key which will be used by the Frontend when charging the ticket buyers later.

Lastly we can go over the Stripe Authorization model as well. The stripe_secret_key will be used to charge the customers later.

id = db.Column(db.Integer, primary_key=True)
stripe_secret_key = db.Column(db.String)
stripe_refresh_token = db.Column(db.String)
stripe_publishable_key = db.Column(db.String)
stripe_user_id = db.Column(db.String)
stripe_auth_code = db.Column(db.String)

References

 

Open Event Server – Export Event as xCalendar File

FOSSASIA‘s Open Event Server is the REST API backend for the event management platform, Open Event. Here, the event organizers can create their events, add tickets for it and manage all aspects from the schedule to the speakers. Also, once he makes his event public, others can view it and buy tickets if interested.

To make event promotion easier, we also provide the event organizer to export his event as an xCalendar file. xCal is an XML representation of the iCalendar standard. xCal is not an alternative nor next generation of iCalendar. xCal represents iCalendar components, properties, and parameters as defined in iCalendar. This format was selected to ease its translation back to the iCalendar format using an XSLT transform.

Server side – generating the xCal file

Here we will be using the xml.etree.ElementTree package for Python for parsing and creating XML data.

from xml.etree.ElementTree import Element, SubElement, tostring
  • We define a class XCalExporter which has a static method export(event_id).
  • Query the event using the event_id passed and start forming the calendar:
event = Event.query.get(event_id)

tz = event.timezone or 'UTC'
tz = pytz.timezone(tz)

i_calendar_node = Element('iCalendar')
i_calendar_node.set('xmlns:xCal', 'urn:ietf:params:xml:ns:xcal')
v_calendar_node = SubElement(i_calendar_node, 'vcalendar')
version_node = SubElement(v_calendar_node, 'version')
version_node.text = '2.0'
prod_id_node = SubElement(v_calendar_node, 'prodid')
prod_id_node.text = '-//fossasia//open-event//EN'
cal_desc_node = SubElement(v_calendar_node, 'x-wr-caldesc')
cal_desc_node.text = "Schedule for sessions at " + event.name
cal_name_node = SubElement(v_calendar_node, 'x-wr-calname')
cal_name_node.text = event.name
  • We query for the accepted sessions of the event and store it in sessions
sessions = Session.query \
   .filter_by(event_id=event_id) \
   .filter_by(state='accepted') \
   .filter(Session.deleted_at.is_(None)) \
   .order_by(asc(Session.starts_at)).all()
  • We then iterate through all the sessions in sessions.
  • If it is a valid session, we instantiate a SubElement and store required details
v_event_node = SubElement(v_calendar_node, 'vevent')

method_node = SubElement(v_event_node, 'method')
method_node.text = 'PUBLISH'

uid_node = SubElement(v_event_node, 'uid')
uid_node.text = str(session.id) + "-" + event.identifier

dtstart_node = SubElement(v_event_node, 'dtstart')
dtstart_node.text = tz.localize(session.starts_at).isoformat()

…. So on
  • We then loop through all the speakers in that particular session and add it to the xCal calendar node object as well.
for speaker in session.speakers:
   attendee_node = SubElement(v_event_node, 'attendee')
   attendee_node.text = speaker.name
  • And finally, the string of the calendar node is returned. This is the xCalendar file contents. This can be directly written to a file.
return tostring(i_calendar_node)

Obtaining the xCal file:

Firstly, we have an API endpoint which starts the task on the server.

GET - /v1/events/{event_identifier}/export/xcal

Here, event_identifier is the unique ID of the event. This endpoint starts a celery task on the server to export the event as an xCal file. It returns the URL of the task to get the status of the export task. A sample response is as follows:

{
  "task_url": "/v1/tasks/b7ca7088-876e-4c29-a0ee-b8029a64849a"
}

The user can go to the above-returned URL and check the status of his Celery task. If the task completed successfully he will get the download URL. The endpoint to check the status of the task is:

and the corresponding response from the server –

{
  "result": {
    "download_url": "/v1/events/1/exports/http://localhost/static/media/exports/1/zip/OGpMM0w2RH/event1.zip"
  },
  "state": "SUCCESS"
}

The file can be downloaded from the above mentioned URL.

Hence, now the event can be added to any scheduling app which recognizes the xcs format.

References

Integrating Stripe OAuth in Open Event Frontend

Why is Stripe Oauth needed in frontend? Open event allows organizers to add tickets and accepts payments for tickets through various modes for example, Credit card, Debit card, Netbanking and offline payments. Stripe allows users to accept payments into their linked accounts on various online platforms after they provide client secret and publishable key. So to enable online payments in open event, organizers were required to authenticate their stripe account. This is done through Stripe OAuth.

Flow of OAuth

To allow organizers to link their stripe account admin has to enable stripe under payment gateway in admin settings. Admin provides his client ID and secret key. Admin also sets the redirect URL for his app on the stripe dashboard. After enabling these settings organizer will see an option to link their stripe account to open event when they are creating an event with paid tickets.

Here is what open event frontend does when we click connect to stripe button:

  1. Opens a popup to allow organizer to fill his stripe credentials and authorize open event app to access their secret and publishable key.
  2. Once the organizer fills his credentials and authorizes open event app, open event frontend fetches organizers auth code and saves it to server.
  3. Server on receiving auth code from frontend makes a request to stripe using the auth code to retrieve the publishable key and secret key.
  4. Once these are fetched server saves this information against the event so that all payments for that event can go to the linked stripe account.

Implementing the Frontend portion:

  • Choosing the library:

After looking at various libraries that support OAuth for Ember applications we decided to use Torii. Torii is the library that allows the addition of OAuth for various social apps such as Facebook, Google and Stripe too. It allows writing a custom provider for OAuth in case we do not want to use clients for which torii provides supports by default.

  • Implementing Stripe Provider:

Default provider for stripe given by torii fetched the client ID and redirect URL from environment.js file. But since in open event we have already saved client id of admin in our database so we will extend default stripe provider and modify its client Id so that it fetches client id from server. Code for extending default provider is given here:

import stripeConnect from 'torii/providers/stripe-connect';
import { alias } from '@ember/object/computed';
import { inject } from '@ember/service';
import { configurable } from 'torii/configuration';

function currentUrl() {
 let url = [window.location.protocol,
   '//',
   window.location.host].join('');
 if (url.substr(-1) !== '/') {
   url += '/';
 }
 return url;
}

export default stripeConnect.extend({

 settings: inject(),

 clientId: alias('settings.stripeClientId'),

 redirectUri: configurable('redirectUri', function() {
   return `${currentUrl()}torii/redirect.html`;
 })

});

 

We have fetched clientId from our settings service as alias(‘settings.stripeClientId’).

We have already defined settings in our services so we just need to inject the service here to be able to use it.

By default torii provides redirect url as {currentUrl}/torii/redirect.html. But in open event frontend we allow organizers to edit information on two routes and torii suggests in its docs to use {baseUrl}/torii/redirect.html as the redirect url to avoid potential vulnerability. So we also modified the default redirect url building method.

Saving information to server

Once we get the authorization token from stripe we send it to the server and save it to stripe-authorization model. The logic for the same is given below:

connectStripe() {
     this.get('data.event.stripeAuthorization.content') ? '' : this.set('data.event.stripeAuthorization', this.store.createRecord('stripe-authorization'));
     this.get('torii').open('stripe')
       .then(authorization => {
         this.set('data.event.stripeAuthorization.stripeAuthCode', authorization.authorizationCode);
       })
       .catch(error => {
         this.get('notify').error(this.get('l10n').t(`${error.message}. Please try again`));
       });
   },

 

This action gets called when we click on connect to stripe button. This action calls the stripe provider and opens a popup to enable the organizer to authenticate his stripe account.
Full code for this can be seen here.

In this way we connect the stripe service to open event to allow the organizer to receive payments for his events.

Resources
  • Stripe : Documentation on Stripe-Connect : Link
  • Torii: Library to implement Oauth. : Link
  • Implementation: Link to PR showing its implementation : Link

Open Event Server – Export Event as an iCalendar File

FOSSASIA‘s Open Event Server is the REST API backend for the event management platform, Open Event. Here, the event organizers can create their events, add tickets for it and manage all aspects from the schedule to the speakers. Also, once he makes his event public, others can view it and buy tickets if interested.

To make event promotion easier, we also provide the event organizer to export his event as an iCalendar file. Going by the Wikipedia definition, iCalendar is a computer file format which allows Internet users to send meeting requests and tasks to other Internet users by sharing or sending files in this format through various methods. The files usually have an extension of .ics. With supporting software, such as an email reader or calendar application, recipients of an iCalendar data file can respond to the sender easily or counter propose another meeting date/time. The file format is specified in a proposed internet standard (RFC 5545) for calendar data exchange.

Server side – generating the iCal file

Here we will be using the icalendar package for Python as the file writer.

from icalendar import Calendar, vCalAddress, vText
  • We define a class ICalExporter which has a static method export(event_id).
  • Query the event using the event_id passed and start forming the calendar:
event = EventModel.query.get(event_id)

cal = Calendar()
cal.add('prodid', '-//fossasia//open-event//EN')
cal.add('version', '2.0')
cal.add('x-wr-calname', event.name)
cal.add('x-wr-caldesc', "Schedule for sessions at " + event.name)
  • We query for the accepted sessions of the event and store it in sessions.
sessions = Session.query \
   .filter_by(event_id=event_id) \
   .filter_by(state='accepted') \
   .filter(Session.deleted_at.is_(None)) \
   .order_by(asc(Session.starts_at)).all()
  • We then iterate through all the sessions in sessions.
  • If it is a valid session, we instantiate an icalendar event and store required details.
event_component = icalendar.Event()
event_component.add('summary', session.title)
event_component.add('uid', str(session.id) + "-" + event.identifier)
event_component.add('geo', (event.latitude, event.longitude))
event_component.add('location', session.microlocation.name or '' + " " + event.location_name)
event_component.add('dtstart', tz.localize(session.starts_at))
event_component.add('dtend', tz.localize(session.ends_at))
event_component.add('email', event.email)
event_component.add('description', session.short_abstract)
event_component.add('url', url_for('event_detail.display_event_detail_home',
                                  identifier=event.identifier, _external=True))
  • We then loop through all the speakers in that particular session and add it to the iCal Event object as well.
for speaker in session.speakers:
   # Ref: http://icalendar.readthedocs.io/en/latest/usage.html#file-structure
   # can use speaker.email below but privacy reasons
   attendee = vCalAddress('MAILTO:' + event.email if event.email else '[email protected]')
   attendee.params['cn'] = vText(speaker.name)
   event_component.add('attendee', attendee)
  • This event_component is then added to the cal object that we created in the beginning.
cal.add_component(event_component)
  • And finally, the cal.to_ical() is returned. This is the iCalendar file contents. This can be directly written to a file.
return cal.to_ical()

Obtaining the iCal file:

Firstly, we have an API endpoint which starts the task on the server.

GET - /v1/events/{event_identifier}/export/ical

Here, event_identifier is the unique ID of the event. This endpoint starts a celery task on the server to export the event as an iCal file. It returns the task of the URL to get the status of the export task. A sample response is as follows:

{
  "task_url": "/v1/tasks/b7ca7088-876e-4c29-a0ee-b8029a64849a"
}

The user can go to the above returned URL and check the status of his Celery task. If the task completed successfully he will get the download URL. The endpoint to check the status of the task is:

and the corresponding response from the server –

{
  "result": {
    "download_url": "/v1/events/1/exports/http://localhost/static/media/exports/1/zip/OGpMM0w2RH/event1.zip"
  },
  "state": "SUCCESS"
}

The file can be downloaded from the above mentioned URL.

Hence, now the event can be added to any scheduling app which recognizes the ics format.

References

Open Event Frontend – Implement Access Event API via REST API

FOSSASIA‘s Open Event Frontend uses the Open Event Server as the REST API backend. The user can create an event using the Frontend. He can add sessions, tickets speakers etc. and all this updates the database tables in Open Event Server. The server provides certain endpoints for the user to access and/or update the information. It is important that the user is aware of the expected response from the server for his API request. Let’s see how this is displayed in the frontend.

In the event-view page of the frontend, which is accessible to the organizers, there is an Export tab, along with Overview, Tickets, Scheduler, Sessions, Speakers.

This tab has an Access Event Information via REST API section which displays the URL to be used by the user and the expected response. It looks as follows :

The user can choose between various options which he can include or exclude. The GET URL is modified accordingly and the appropriate response is shown to the user.

Example of this –

How is this implemented in Code?

We maintain two variables baseUrl and displayUrl to display the URL. baseUrl is the URL which is common in all requests, ie, till the include tag.

baseUrl: computed('eventId', function() {
 return `${`${ENV.APP.apiHost}/${ENV.APP.apiNamespace}/events/`}${this.get('eventId')}`;
})

displayUrl is the variable which stores the URL being displayed on the webpage. It is initialized to the same as baseUrl.

displayUrl: computed('eventId', function() {
 return `${`${ENV.APP.apiHost}/${ENV.APP.apiNamespace}/events/`}${this.get('eventId')}`;
})

To store the value of the toggle switches we use toggleSwitches as follows:

toggleSwitches: {
 sessions       : false,
 microlocations : false,
 tracks         : false,
 speakers       : false,
 sponsors       : false,
 tickets        : false
}

Whenever any of the switches are toggled, an action checkBox is called. This method updates the value of toggleSwitches, calls the method to update the displayUrl and make the corresponding API request to update the displayed response. The code looks like this :

makeRequest() {
 this.set('isLoading', true);
 this.get('loader')
   .load(this.get('displayUrl'), { isExternal: true })
   .then(json => {
     json = JSON.stringify(json, null, 2);
     this.set('json', htmlSafe(syntaxHighlight(json)));
   })
   .catch(() => {
     this.get('notify').error(this.get('l10n').t('Could not fetch from the server'));
     this.set('json', 'Could not fetch from the server');
   })
   .finally(() => {
     this.set('isLoading', false);
   });
},

buildDisplayUrl() {
 let newUrl = this.get('baseUrl');
 const include = [];

 for (const key in this.get('toggleSwitches')) {
   if (this.get('toggleSwitches').hasOwnProperty(key)) {
     this.get('toggleSwitches')[key] && include.push(key);
   }
 }

 this.set('displayUrl', buildUrl(newUrl, {
   include: include.length > 0 ? include : undefined
 }, true));
},

actions: {
 checkboxChange(data) {
   this.set(`toggleSwitches.${data}`, !this.get(`toggleSwitches.${data}`));
   this.buildDisplayUrl();
   this.makeRequest();
 }
}

The above code uses some utility methods such as buildUrl and this.get(‘loager’).load(). The complete codebase is available here -> Open Event Frontend Repository.

References

Adding System Image for Event Categories

The Open Event Server is using the JSON 1.0 Specification and build on top of Flask Rest Json API (for building Rest APIs) and Marshmallow (for Schema). In this blog, we will talk about how to add feature of System Image for Event Categories on Open Event Server. The focus is on Model updation, Schema updation and migrating the Database.

Model Updation

For adding System Image, we’ll update our Model EventTopic.

In this feature, we are providing rights to the Admin to add a system image for each Event Category so that if no image is given by a organizer of event on event creation then it will use the system image of that Event Category as event image by default.

Here we are adding a Column named system_image_url which is of type String. This value cannot be nullable and having a default value.

Migrating the Database

For the migrating the Database we will use simple commands.

This command runs migrations. If it cause problems naming Multiple Migration Head, then you need to run

This problem is caused when two developers push a migration file without merging two heads to achieve one head.

The above command will give us ids of two migration heads.

This command is merging two migration heads.

This command is upgrading the migrations.

Finally, we migrate the Database using above command.

Schema Updation

For the system image, we’ll update the Schema EventTopicSchema as follows

In this feature, to provide system image for each Event Category we’ll add a field named system_image_url in the Schema.

Here we are adding a field named system_image_url which is of marshmallow field type URL. This value cannot be none.

Validating the Event Image and using System Image by default

In this step, we’ll check if a event image is provided by organizer. If that is not provided then we’ll use system image of Event Category as Event Image.

Here, we will first take the event topic of event as added by the organizer. Then we will fetch the the database row in Event Topic model which has id == event_topic_id . Then we will return the system image url of that event topic to the event image.

So we saw how we could provide a default image for any event.

Resources

Adding Statistics of Event-Type on Open Event Server

The Open Event Server enables organizers to manage events from concerts to conferences and meet-ups. It offers features for events with several tracks and venues. In this blog, we will talk about how to add statistics of event-type on Open Event Server. The focus is on to get number of events of a specific event type.

Number of events of a specific event type

Now, let’s try to understand this API. Here, we are using flask Blueprints to add this API to the API index.

  1. First of all, we are using the decorator of event_statistics which will append this API route with that of mentioned in the Blueprint event_statistics.
  2. We will just allow logged in user to access this API using JWT (JSON Web Token)
  3. To return the response having all the event types alongwith number of events of it, requires a lot of queries if tried to fulfilled by SQLALchemy ORM. So instead of using ORM we will query using SQL command so that we query the number of all the events of different event types in just one query, which will eventually reduces the time of server to return the response.
  4. In function event_types_count we are using db.engine.execute to run the SQL command of getting the statistics of events respective to event types.
  5. The response will include id of event_type, name of event_type and count of events of corresponding event_type.
  6. Finally, we jsonify the list having objects of statistics of events respective to event types.

Similarly, event topics statistics can be implemented to return the number of events of all the event topics.

Resources

Adding Modules API on Open Event Server

The Open Event Server enables organizers to manage events from concerts to conferences and meet-ups. It offers features for events with several tracks and venues. Event managers can create invitation forms for speakers and build schedules in a drag and drop interface. The event information is stored in a database. The system provides API endpoints to fetch the data, and to modify and update it.

The Open Event Server is based on JSON 1.0 Specification and hence build on top of Flask Rest Json API (for building Rest APIs) and Marshmallow (for Schema).

In this blog, we will talk about how to add API for accessing the Modules on Open Event Server. The focus is on Schema creation and it’s API creation.

Schema Creation

For the ModuleSchema, we’ll make our Schema as follows

Now, let’s try to understand this Schema.

In this feature, we are providing Admin the rights to set whether Admin wants to include tickets, payment and donation in the open event application.

  1. First of all, we will provide three fields in this Schema, which are ticket_include, payment_include and donation_include.
  2. The very first attribute ticket_include should be Boolean as we want Admin to update it whether he wants to include ticketing system in the application from default one which is False.
  3. Next attribute payment_include should be Boolean as we want Admin to update it whether he wants to include payment system in the application from default one which is False.
  4. Next attribute donation_include should be Boolean as we want Admin to update it whether he wants to include donation system in the application from default one which is False.

API Creation

For the ModuleDetail, we’ll make our API as follows

Now, let’s try to understand this API.

In this API, we are providing Admin the rights to set whether Admin wants to include tickets, payment and donation in the open event application.

  1. First of all, there is the need to know that this API has two method GET and PATCH.
  2. Decorators shows us that only Admin has permissions to access PATCH method for this API i.e. only Admins can modify the modules .
  3. before_get method shows us that this API will give first record of Modules model irrespective of the id requested by user.
  4. Schema used here is default one of Modules
  5. Hence, GET Request is accessible to all the users.

So, we saw how Module Schema and API is created to allow users to get it’s values and Admin users to modify it’s values.

Resources