Implementing Login Functionality in SUSI Web Chat

SUSI Web Chat is fully equipped with all the accounting features which are being provided by the SUSI.AI API. This blog discloses all the API features one needs to know to embed the Login functionality in SUSI Web Chat.

  1. To embed the Login feature, first we create a form using material-ui.com components with the followng fields
    1. Email
    2. Password
    3. Note: We can also chose a Custom Server while logging in, here I have used the Standard Server ie. http://api.susi.ai to make the user Login

The form can be made with the help of the following fields

  • TextField for Email, props to be passed
    • Name – email
    • Value – this.state.email which gets the value of the current email
    • floatingLabelText is Email,
    • errorText is the message which we want to show when the email does not match the regex or its empty.

Code Snippet –

<TextField name="email" value={this.state.email} onChange={this.handleChange} errorText={this.emailErrorMessage}    floatingLabelText="Email" />
  • PasswordField for Password
    • Name – password
    • Value – this.state.password which gets the value of the current email
    • floatingLabelText is Password,
    • errorText is the message which we want to show when the password is not filled.

Code Snippet-

<PasswordField name='password' value={this.state.password} onChange={this.handleChange} errorText={this.passwordErrorMessage}   floatingLabelText='Password' />
  • The next elements are RadioButton groups taken from material-ui.com. This ensures the user signs into a standard server or even to a custom server. This is not compulsory as of now.
  • And lastly we need a submit button, which is disabled until all the fields are filled.

Code Snippet –

<RaisedButton label="Login" type="submit" labelColor="#fff" disable={!this.state.validForm} />

For the full form, check out this file at Login.react.js

  1. A Sample UI could be as shown in the image
  2. Next after creating the Login Screen, we make the onSubmit prop which is to be hooked up with another function called handleSubmit. An example code snippet from Login.react.js
 handleSubmit = (e) => {
        e.preventDefault();
        // Get the trimmed values from the fields
        var email = this.state.email.trim();
        var password = this.state.password.trim();
        // Set the default server to login
        let BASE_URL = defaults.Server;
            // handle all the details of the chosen server
        let serverUrl = this.state.serverUrl;
        if(serverUrl.slice(-1) === '/'){
            serverUrl = serverUrl.slice(0,-1);
        }
        if(serverUrl !== ''){
            BASE_URL = serverUrl;
        }
// if email and password is filled return true
        if (!email || !password) { return this.state.isFilled; }
// Check the regex of email
        let validEmail = /^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}$/i.test(email); 
// Pass the parameters to the loginEndPoint
        let loginEndPoint =
            BASE_URL+'/aaa/login.json?type=access-token&login=' +
            this.state.email + '&password=' + this.state.password;
        // If email and password is filled and valid call AJAX
        if (email && validEmail) {
            // AJAX Calls
        }
    }
    1. Then we make the Ajax Calls and store the created token from hitting the URL at http://api.susi.ai/aaa/login.json?type=access-token&login=EMAIL&password=PASSWORD. We store the cookie in browser and generate a session for the user using a package ‘universal-cookies’.
$.ajax({
    url: loginEndPoint,
    dataType: 'jsonp',
    jsonpCallback: 'p',
    jsonp: 'callback',
    crossDomain: true,
    success: function (response) {
        cookies.set('serverUrl', BASE_URL, { path: '/' });
        let accessToken = response.access_token;
        let state = this.state;// Adding the current State
        let time = response.valid_seconds; // Get the valid time of the cookie
        state.isFilled = true; // Set isFilled to true
        state.accessToken = accessToken; // Get the token
        state.success = true; // Set Success to true
        state.msg = response.message; // Get the server message
        state.time = time; // Get the time in the state
        this.setState(state); // Set the  state with the values
/* Pass the token to the binding function handleOnSubmit passing the arguments - token and the valid time */
        this.handleOnSubmit(accessToken, time);
    }.bind(this),
    error: function (errorThrown) {
        let msg = 'Login Failed. Try Again';
        let state = this.state;
        state.msg = msg;
        this.setState(state);
    }.bind(this)
});

 

    1. We then fire up the handleOnSubmit(accessToken, time) which saves the token for the given expiration time from the server.

Here’s the sample code

handleOnSubmit = (loggedIn, time) => {
        let state = this.state;
        if (state.success) {
            cookies.set('loggedIn', loggedIn, { path: '/', maxAge: time }); // set the cookie in the browser to maintain the loggedIn state
            this.props.history.push('/', { showLogin: false });
            window.location.reload();// reload after the loggedIn cookie creation
        }
        else {
            this.setState({
                error: true,
                accessToken: '',
                success: false
            });
        }
    }
  1. We then check the access token and redirect him based on his login state. This is handled in MessageSection.react.js
import Cookies from 'universal-cookie';
const cookies = new Cookies();
if (cookies.get('loggedIn')) {
    //Show all functionalities of loggedIn state
}
else {
//Redirect user to login page
}

 

To have a look at the full project, visit https://github.com/fossasia/chat.susi.ai and feel free to contribute. To test the project visit http://chat.susi.ai

Resources

Continue ReadingImplementing Login Functionality in SUSI Web Chat

Multiple dynamic sub routes in Open Event Front-end

Dynamic routing is a section of the path for a route which changes based on the content of a page. Instead of having multiple routes for similar pages we have one route that changes state accordingly. Dynamic routing is extensively used in the Open Event Front-end application, for tables, events & other pages.

Sometimes we might need to have multiple dynamic routes for a particular route in this case we need to do implement a custom route redirection. Let’s see how did we implement it in the events route?

Dynamic routes in events route

The events route has two dynamic subroutes view & list. By default the dynamic route which is declared at the last will be used by ember which is list route in this case. This leads to loss of the view route which uses the ID of the event to display the event details.

this.route('events', function() {
  this.route('view', { path: '/:event_id' }, function() {
  });
  this.route('list', { path: '/:event_state' });
  this.route('import');
});

Here event_id is the ID of an event from the API response, event_state is the state of the list of events created by the user. The event_id is an alphanumeric value which is dynamic in nature and event_state is a string value which is a static value. Due to non overlapping states we can implement a simple procedure that enables us to create multiple dynamic routes.

Implementing multiple dynamic routing in ‘events’ route

As both the subroutes use different states i.e event_id & event_state, we can use this to redirect the routes accordingly. We will add a beforeModel() function in the events/list route and check if the eventState is not equal to live, draft or past which are the states of list route.

beforeModel(transition) {
   const eventState = transition.params[transition.targetName].event_state;
  if (!['live', 'draft', 'past'].includes(eventState)) {
    this.replaceWith('events.view', eventState);
  }
}

If the ‘eventState’ is not in the array we redirect the page to the events.view route using the replaceWith() function. This will ensure that the events.view route is not lost & the event details are rendered properly.

Thank you for reading the blog, you can check the source code for the example here.

Resources

Continue ReadingMultiple dynamic sub routes in Open Event Front-end

Implementing Email Preferences in Open Event Front-end

Open Event Front-end lets users customise the email preferences for the notifications for the events created by the user. The user can toggle the notifications for new paper is submitted, change in schedule of sessions,  and reminder for event. In this post we will implement a functional UI for the email preferences in the application. How did we do it?

Creating email-preferences component

We create a component for the email-preferences component using ember-cli command:

ember g component settings/email-preferences-section


Mock response from server

Each event has notification preferences for three services new papers, change in schedule & new event which are stored as a boolean in the server. Each response model contains all the flags for the email preferences.


Implementing UI for email preferences

We use ui-accordion for each event created by the user. The ui-accordion lets us toggle the display for content section, similar to jquery’s collapse-in class. You can find more about semantic ui’s ui-accordion here.Implementing UI for email-preferences-section

model() {
 return [{
   name             : Techtoma,
   role             : Organiser,
   isNewPaper       : true,
   isChangeSchedule : true,
   isNewEvent       : true
 }];

Each preference can be toggled using ui-checkbox from semantic ui. When a checkbox is toggled the respective flag in the model.

<div class="row">
  <div class="column eight wide">
    {{t 'New Paper is Submitted to your Event'}}
  </div>
  <div class="ui column eight wide right aligned">
    {{ui-checkbox class='toggle' checked=event.isNewPaper onChange=(action (mut event.isNewPaper))}}
  </div>
</div>
<div class="row">
  <div class="column eight wide">
    {{t 'Change in Schedule of Sessions in your Event'}}
  </div>
  <div class="ui column eight wide right aligned">
    {{ui-checkbox class='toggle' checked=event.isChangeSchedule onChange=(action (mut event.isChangeSchedule))}}
  </div>
</div>
<div class="row">
  <div class="column eight wide">
    {{t 'Reminder for Next Event'}}
  </div>
  <div class="ui column eight wide right aligned">
    {{ui-checkbox class='toggle' checked=event.isNewEvent onChange=(action (mut event.isNewEvent))}}
  </div>
</div>

If any of the preference is not set i.e false, we toggle the status of the preferences to off. We use math helper or operation for setting the status of the preferences for each preference. We also toggle between the colour of the button between green and yellow, depending on the status of preferences setting.

<a class="ui circular label {{if (or event.isNewPaper event.isChangeSchedule event.isNewEvent) 'green' 'yellow'}}">
  {{#if (or event.isNewPaper event.isChangeSchedule event.isNewEvent)}}
    {{t 'On'}}
  {{else}}
    {{t 'Off'}}
  {{/if}}
</a> 

This results to the following changes on the Open Event Front-end:

The source code for the example is available here.

Resources

Continue ReadingImplementing Email Preferences in Open Event Front-end

Image Cropper On Ember JS Open Event Frontend

In Open Event Front-end, we have a profile page for every user who is signed in where they can edit their personal details and profile picture. To provide better control over profile editing to the user, we need an image cropper which allows the user to crop the image before uploading it as their profile picture. For this purpose, we are using a plugin called Croppie. Let us see how we configure Croppie in the Ember JS front-end to serve our purpose.

All the configuration related to Croppie lies in a model called cropp-model.js.

 onVisible() {
    this.$('.content').css('height', '300px');
    this.$('img').croppie({
      customClass : 'croppie',
      viewport    : {
        width  : 400,
        height : 200,
        type   : 'square'
      },
      boundary: {
        width  : 600,
        height : 300
      }
    });
  },

  onHide() {
    this.$('img').croppie('destroy');
    const $img = this.$('img');
    if ($img.parent().is('div.croppie')) {
      $img.unwrap();
    }
  },

  actions: {
    resetImage() {
      this.onHide();
      this.onVisible();
    },
    cropImage() {
      this.$('img').croppie('result', 'base64', 'original', 'jpeg').then(result => {
        if (this.get('onImageCrop')) {
          this.onImageCrop(result);
        }
      });
    }

There are two functions: onVisible() and onHide(), which are called every time when we hit reset button in our image cropper model.

  • When a user pushes reset button, the onHide() function fires first which basically destroys a croppie instance and removes it from the DOM.
  • onVisible(), which fires next, sets the height of the content div. This content div contains our viewport and zoom control. We also add a customClass of croppie to the container in case we are required to add some custom styling. Next, we set the dimensions and the type of viewport which should be equal to the dimensions of the cropped image. We define type of cropper as ‘square’ (available choices are ‘square’ and ‘circle’). We set the dimensions of our boundary. The interesting thing to notice here is that we are setting only the height of the boundary because if we pass only the height of the boundary, the width will be will be calculated using the viewport aspect ratio. So it will fit in all the screen sizes without overflowing.

The above two functions are invoked when we hit the reset button. When the user is satisfied with the image and hits ‘looks good’ button, cropImage() function is called where we are get the resulting image by passing some custom options provided by croppie like base64 bit encoding and size of cropped image which we are set to ‘original’ here and the extension of image which is we set here as ‘.jpeg’. This function returns the image of desired format which we use to set profile image.

Resources

Continue ReadingImage Cropper On Ember JS Open Event Frontend

Sorting Events in Open Event Organizer Android App

While working on Open Event Organizer project, we had to display events in a single list in custom order with proper sub headings. Initially, we were thinking of using tabbed activity and showing events in respective tabs. But the thing with tabs is that it requires you to nest fragments and then each of them will have adapters. Also, we have used Model View Presenter pattern in the project, so this is another reason we did not use view pager as it would increase the number of presenter and view classes for the same feature. So we decided to display events in a single list instead. The custom order decided was that events would be divided into three categories – live, upcoming and past. In each category, a recent event will be at the top of another.

Adding SubHeadings support to the Recycler View

So the first thing was adding subheading support to the recycler view. We have used timehop’s sticky header decorators library for subheadings implementation. First, your adapter should implement the interface StickyRecyclerHeadersAdapter provided by the library. In our case the implemented methods look like:

@Override
public long getHeaderId(int position) {
  Event event = events.get(position);
  return DateService.getEventStatus(event).hashCode();
}

@Override
public EventsHeaderViewHolder onCreateHeaderViewHolder(ViewGroup viewGroup) {
  return new EventsHeaderViewHolder(EventSubheaderLayoutBinding.inflate(LayoutInflater.from(viewGroup.getContext()), viewGroup, false));
}

@Override
public void onBindHeaderViewHolder(EventsHeaderViewHolder holder, int position) {
  Event event = events.get(position);
  holder.bindHeader(DateService.getEventStatus(event));
}

@Override
public int getItemCount() {
  return events.size();
}

 

The first one is getHeaderId which returns a unique id for a group of items which should appear under a single subheading. In this case, DateService.getEventStatus returns status of an event (either live, past or upcoming) and so hashcode of it is returned as a unique id for that header. OnCreateHeaderViewHolder is same as onCreateViewHolder of your adapter. Return your header view here. Similarly in onBindViewHolder, bind data to the header. getItemCount returns total number of items.

Sorting Events

The important thing to do was sorting events in the order decided. We had to implement the Comparable interface to Event model which will compare any two events using our custom rules such that after sorting we get events in the order – Live, Upcoming and Past with recent one at the top in each category. The compareTo method of Event model looks like:

public int compareTo(@NonNull Event otherEvent) {
  Date now = new Date();
  try {
     Date startDate = DateUtils.getDate(getStartTime());
     Date endDate = DateUtils.getDate(getEndTime());
     Date otherStartDate = DateUtils.getDate(otherEvent.getStartTime());
     Date otherEndDate = DateUtils.getDate(otherEvent.getEndTime());
     if (endDate.before(now) || otherEndDate.before(now)) {
         // one of them is past and other can be past or live or upcoming
         return endDate.after(otherEndDate) ? -1 : 1;
     } else {
         if (startDate.after(now) || otherStartDate.after(now)) {
             // one of them is upcoming other can be upcoming or live
             return startDate.before(otherStartDate) ? -1 : 1;
         } else {
             // both are live
             return startDate.after(otherStartDate) ? -1 : 1;
         }
     }
  } catch (ParseException e) {
  e.printStackTrace();
  }
  return 1;
}

 

The compareTo method returns a positive integer value for greater than, the negative integer value for less than and 0 if equal. Accordingly, we have implemented the method as per our need. At first case, we check if one of the events is past by comparing end dates with now. So the other event can be past, live or upcoming. In all the cases we will need to have an event top of another if an end date of the event is before the end date of another. In next case, only live and upcoming events pair will reach to this case. So, in this case, we check if one of them is upcoming so that other can be either upcoming or live. In both the cases, we need to have an event with start date before another’s start date at the top. Hence just comparing start dates of them will do the trick. For the last case, we are left with both live events. So here we need an event with start date after another event at the top. Hence just comparing start date if it is after other’s start date then it comes on top of another.

Using this method, events are sorted and supplied to the adapter which implements StickyRecyclerHeadersAdapter. Hence in the list, events are displayed in Live, Upcoming and Past categories as expected with respective section headers and in each category, a recent event comes on top of another.

Links:
Sticky headers decorator library- https://github.com/timehop/sticky-headers-recyclerview

Continue ReadingSorting Events in Open Event Organizer Android App

How to use Digital Ocean and Docker to setup Test CMS for Phimpme

One of the core feature of Phimpme app is sharing images to other different accounts, including various open source CMS such as WordPress, Drupal etc and other open source data storage account such as OwnCloud, NextCloud etc.

One can not have everything at place, but for development and testing purpose it is required in our end. So problem I was facing to get things done in most optimize way. I thought setting things on hosted server would be good, because it saves lots of time in setting locally in our system, adding all the dependencies. And also we cannot share the account as it is limited to our local environment.

Digital Ocean caught my attention in providing hosting service. It is very easy to use with their droplet creation. Select as per your system requirement and service requirement, the droplet will be ready in few moments and we can use it anywhere.

Note: DigitalOcean is a paid service. Student can use Github Education Pack for free credits on Digital Ocean. I used the same.

I currently worked on Nextcloud integration so here in this blog I will tell how to quickly create nextcloud server using Digital Ocean and Docker.

Step 1: Creating Droplet

DigitalOcean completely work on droplets and one can anytime create and destroy different droplets associated with their account.

Choose an Image

So there are three options of choosing the image of Droplet.

Distributions : Which is other operating systems you want to use

One Click app: It is a very good feature as it creates everything for use in just one click. But again, it doesn’t provide everything, like there is no NextCloud. That’s why I used docker to take its image.

Snapshots: This is if you saved your droplet already, so it will pick it and creates similar to the saved image. Here I selected Docker from one-click apps section.

Selecting the size

This is for selecting the size of the server we are creating, For small development purpose $5 plan is good. There is a good thing in DigitalOcean as it didn’t charge on the monthly basis to the use. It works on hourly basis and charge according to that. Also providing the SSD Disk for fast IO operations.

Choose a datacenter Region

Add SSH

This is very important to add a ssh key. Otherwise you have to setup root password or used the shell they provide. To work on your computer terminal, its good that you setup an ssh key already and it to the account.

How to get ssh key in your system: https://help.github.com/

Rename the number of droplet and name of the droplet and create.

Now it will show there in your droplet section

Step 2: Access the Server

As we have already added the ssh key to our droplet. Now we can access it from our terminal. Open the terminal and type this

➜  ~ ssh root@<your IP> 

It will logged in to you

root@docker-512mb-blr1-01:~# 

Our objective is setting a NextCloud Account.

Here now I will use Docker. Firstly, What is Docker?

Go here to read: https://www.docker.com/what-docker

I will explain docker in other words. Like I setted up everything which I need. Now If I have to destroy this all and want to use it after some days. Or if my friends wants to use the setted platform. What is the option here?

Recreate and everything everytime? NO.

Just create docker image, save it pull the image when you want, and run it to serve on the serve. Your friends need, provide them the docker image.

Isn’t it cool and much time saving.

Browse the Docker Hub

In the hub we can find docker images for various platforms officially maintained by the authors.

Nextcloud have their official account on Docker to provide latest images to the developers.

Here is the link : https://hub.docker.com/_/nextcloud/

Pull the image in your server.

root@docker-512mb-blr1-01:~# docker pull nextcloud
Using default tag: latest
latest: Pulling from library/nextcloud
9f0706ba7422: Pull complete
4c407763908f: Pull complete
82e2bc3a45c1: Pull complete
c84e1013aed1: Pull complete
a3b5e03d7e24: Pull complete
917f836a88be: Pull complete
b2dc54431819: Pull complete
a60b574790b8: Pull complete
49ef0f1aff88: Pull complete
7773a865ee49: Pull complete
9e0e5cc56a9d: Pull complete
bfade1c7421e: Pull complete
ece8ceb33bed: Pull complete
c691d2747a3e: Pull complete
4b5e96bf54c9: Pull complete
6fbe30ae456b: Pull complete
e0c534b35a6b: Pull complete
4d2687f4b6f3: Pull complete
00197422846a: Pull complete
6ab57168c49c: Pull complete
9e1260db005f: Pull complete
Digest: sha256:1bb5c256f19dcec60d8468c00bc7dc74efdf93390666cb82e20bcacbbbd9746c
Status: Downloaded newer image for nextcloud:latest
root@docker-512mb-blr1-01:~#

Following the documentation

I need to run this command $ docker run -d -p 8080:80 nextcloud

It serves the account on localhost.

Check on your https://<IP>:8080

So in this way I easily setup different account for testing and integration purpose in Phimpme Android app. It really saves lots of time and speed up the process.

You can easily destroy the droplet after work is done.

Student can use the free credits from GitHub Education Pack.

Source:

 

Continue ReadingHow to use Digital Ocean and Docker to setup Test CMS for Phimpme

Shrinking Model Classes Boilerplate in Open Event Android Projects Using Jackson and Lombok

JSON is the de facto standard format used for REST API communication, and for consuming any of such API on Android apps like Open Event Android Client and Organiser App, we need Plain Old Java Objects, or POJOs to map the JSON attributes to class properties. These are called models, for they model the API response or request. Basic structure of these models contain

  • Private properties representing JSON attributes
  • Getters and Setters for these properties used to change the object or access its data
  • A toString() method which converts object state to a string, useful for logging and debugging purposes
  • An equals and hashcode method if we want to compare two objects

These can be easily and automatically be generated by any modern IDE, but add unnecessarily to the code base for a relatively simple model class, and are also difficult to maintain. If you add, remove, or rename a method, you have to change its getters/setters, toString and other standard data class methods.

There are a couple of ways to handle it:

  • Google’s Auto Value: Creates Immutable class builders and creators, with all standard methods. But, as it generates a new class for the model, you need to add a library to make it work with JSON parsers and Retrofit. Secondly, there is no way to change the object attributes as they are immutable. It is generally a good practice to make your models immutable, but if you are manipulating their data in your application and saving it in your database, it won’t be possible except than to create a copy of that object. Secondly, not all database storage libraries support it
  • Kotlin’s Data Classes: Kotlin has a nice way to made models using data classes, but it has certain limitations too. Only parameters in primary constructor will be included in the data methods generated, and for creating a no argument constructor (required for certain database libraries and annotation processors), you either need to assign default value to each property or call the primary constructor filling in all the default values, which is a boilerplate of its own. Secondly, sometimes 3rd party libraries are needed to work correctly with data classes on some JSON parsing frameworks, and you probably don’t want to just include Kotlin in your project just for data classes
  • Lombok: We’ll be talking about it later in this blog
  • Immutables, Xtend Lang, etc

This is one kind of boilerplate, and other kind is JSON property names. As we know Java uses camelcase notation for properties, and JSON attributes are mostly:

  • Snake Cased: property_name
  • Kebab Cased: property-name

Whether you are using GSON, Jackson or any other JSON parsing framework, it works great for non ambiguous property names which match as same in both JSON and Java, but requires special naming attributes for translating JSON attributes to camelcase and vice versa. Won’t you want your parser to intelligently convert property_name to propertyName without having you write the tedious mapping which is not only a boilerplate, but also error prone in case your API changes and you forget to update the annotations, or make a spelling mistake, as they are just non type-safe strings.

These boilerplates cause serious regressions during development for what should be a simple Java model for a simple API response. These both kinds of boilerplate are also related to each other as all JSON parsers look for getters and setters for private fields, so there are two layers of potential errors in modeling JSON to Java Models. This should be a lot simpler than it is. So, in this blog, we’ll see how we can configure our project to be 0 boilerplate tolerant and error free. We reduced approximately 70% boilerplate using this configuration in our projects. For example, the Event model class we had (our biggest) reduced from 590 lines to just 74!

We will use a simpler class for our example here:

public class CallForPapers {

    private String announcement;
    @JsonProperty("starts-at")
    private String startsAt;
    private String privacy;
    @JsonProperty("ends-at")
    private String endsAt;

    // Getters and Setters

    @Override
    public String toString() {
        return "CallForPapers{" +
                "announcement='" + announcement + '\'' +
                ", startsAt='" + startsAt + '\'' +
                ", privacy='" + privacy + '\'' +
                ", endsAt='" + endsAt + '\'' +
                '}';
    }
}

 

Note that getters and setters have been omitted for brevity. The actual class is 57 lines long

As you can see, we are using @JsonProperty annotation to properly map the starts-at attribute to startsAt property and similarly on endsAt. First, we’ll remove this boilerplate from our code. Note that this seems a bit overkill for 2 attributes, but imagine the time you’ll save by not having to maintain 100s of attributes for the whole project.

Jackson is smart enough to map different naming styles to one another in both serializing and deserializing. This is done by using Naming Strategy class in Jackson. There is an option to globally configure it, but I found that it did not work for our case, so we had to apply it to each model. It can be simply done by adding another annotation on the top of your class declaration and removing the JsonProperty attribute from your fields

@JsonNaming(PropertyNamingStrategy.KebabCaseStrategy.class)
public class CallForPapers {

    private String announcement;
    private String startsAt;
    private String privacy;
    private String endsAt;

    // Getters and Setters

    @Override
    public String toString() {
        return "CallForPapers{" +
                "announcement='" + announcement + '\'' +
                ", startsAt='" + startsAt + '\'' +
                ", privacy='" + privacy + '\'' +
                ", endsAt='" + endsAt + '\'' +
                '}';
    }
}

 

Our class looks like this now. But be careful to properly name your getters and setters because now, Jackson will map attributes by method names, so if you name the setter for startsAt -> setStartsAt it will automatically understand that the attribute to be mapped is “starts-at”. But, if the method name is something else, then it won’t be able to correctly map the fields. If your properties are not private, then Jackson may instead use them to map fields, so be sure to name your public properties in a correct manner.

Note: If your API does not use kebab case, there are plenty of other options or naming strategies present in Jackson, one example will be

  • PropertyNamingStrategy.SnakeCaseStrategy for attributes like “starts_at”

 Needless to say, this will only work if your API uses a uniform naming strategy

Now we have removed quite a burden from the development lifecycle, but 70% of class is still getters, setters, toString and other data methods. Now, we’ll configure lombok to automatically generate these for us. First, we’ll need to add lombok in our project by adding provided dependency in build.gradle and sync the project

provided 'org.projectlombok:lombok:1.16.18'

 

And now you’d want to install Lombok plugin in Android Studio by going to Files > Settings > Plugins and searching and installing Lombok Plugin and restarting the IDE

 

After you have restarted the IDE, navigate to your model and add @Data annotation at the top of your class and remove all getters/setters, toString, equals, hashcode and if the plugin was installed correctly and lombok was installed from the gradle dependencies, these will be automatically generated for you at build time without any problem. A way for you to see the generated methods is to the structure perspective in the Project Window.

 

There are many more fun tools in lombok and more fine grained control options are provided. Our class looks like this now

@Data
@JsonNaming(PropertyNamingStrategy.KebabCaseStrategy.class)
public class CallForPapers {
    private String announcement;
    private String startsAt;
    private String privacy;
    private String endsAt;
}

 

Reduced to 16 lines (including imports and package). Now, there are some corner cases that you want to iron out for the integration between lombok and Jackson to work correctly.

Lombok uses property names for generating its getters and setters. But there’s a different convention for handling booleans. For the sake of simplicity, we’ll only talk about primitive boolean. You can check out the links below to learn more about class type. The primitive boolean property of the standard Java format, for example hasSessions will generate hasSessions and getter and setHasSessions. Jackson is smart but it expects a getter named getHasSessions creating problems in serialization. Similarly, for a property name isComplete, generate getter and setter will be isComplete and setComplete, creating a problem in deserialization too. Actually, there are ways how Jackson can get boolean values mapped correctly with these getters/setters, but that method needs to rename property itself, changing the getters and setters generated by Lombok. There is actually a way to tell Lombok to not generate this format of getter/setter. You’d need to create a file named lombok.config in your project directory app/ and write this in it

lombok.anyConstructor.suppressConstructorProperties = true
lombok.addGeneratedAnnotation = false
lombok.getter.noIsPrefix = true

 

There are some other settings in it that make it configured for Android specific project

There are some known issues in Android related to Lombok. As lombok itself is an annotation processor, and there is no order for annotation processors to run, it may create problems with other annotation processors. Dagger had issues with it until they fixed it in their later versions. So you might need to check out if any of your libraries depend upon the lombok generated code like getters and setters. Certain database libraries use that and Android Data Binding does too. Currently, there is no solution to the problem as they will throw an error about not finding a getter/setter because they ran before lombok. A possible workaround is to make properties public so that instead of using getters and setters, these libraries use them instead. This is not a good practice, but as this is a data class and you are already creating getters and setters for all fields, this is not a security vulnerability.

There are tons of options for both Jackson and Lombok with a lot of features to help the development process, so be sure to check out these links:

Continue ReadingShrinking Model Classes Boilerplate in Open Event Android Projects Using Jackson and Lombok

Smart Data Loading in Open Event Android Orga App

In any API centric native application like the Open Event organizer app (Github Repo), there is a need to access data through network, cache it for later use in a database, and retrieve data selectively from both sources, network and disk. Most of Android Applications use SQLite (including countless wrapper libraries on top of it) or Realm to manage their database, and Retrofit has become a de facto standard for consuming a REST API. But there is no standard way to manage the bridge between these two for smart data loading. Most applications directly make calls to DB or API service to selectively load their data and display it on the UI, but this breaks fluidity and cohesion between these two data sources. After all, both of these sources manage the same kind of data.

Suppose you wanted to load your data from a single source without having to worry from where it is coming, it’d require a smart model or repository which checks which kind of data you want to load, check if it is available in the DB, load it from there if it is. And if it not, call the API service to load the data and also save it in the DB there itself. These smart models are self contained, meaning they handle the loading logic and also handle edge cases and errors and take actions for themselves about storing and retrieving the data. This makes presentation or UI layer free of data aspects of the application and also remove unnecessary handling code unrelated to UI.

From the starting of Open Event Android Orga Application planning, we proposed to create an efficient MVP based design with clear separation of concerns. With use of RxJava, we have created a single source repository pattern, which automatically handles connection, reload and database and network management. This blog post will discuss the implementation of the AbstractObservableBuilder class which manages from which source to load the data intelligently

Feature Set

So, first, let’s discuss what features should our AbstractObservableBuilder class should have:

  • Should take two inputs – disk source and network source
  • Should handle force reload from server
  • Should handle network connection logic
  • Should load from disk observable if data is present
  • Should load from network observable if data is not present is disk observable

This constitutes the most basic data operations done on any API based Android application. Now, let’s talk about the implementation

Implementation

Since our class will be of generic type, we will used variable T to denote it. Firstly, we have 4 declarations globally

private IUtilModel utilModel;
private boolean reload;
private Observable<T> diskObservable;
private Observable<T> networkObservable;

 

  • UtilModel tells us if the device is connected to internet or not
  • reload tells if the request should bypass database and fetch from network source only
  • diskObservable is the database source of the item to be fetched
  • networkObservable is the network source of the same item

Next is a very simple implementation of the builder pattern methods which will be used to set these variable fields

@Inject
public AbstractObservableBuilder(IUtilModel utilModel) {
    this.utilModel = utilModel;
}

AbstractObservableBuilder<T> reload(boolean reload) {
    this.reload = reload;

    return this;
}

AbstractObservableBuilder<T> withDiskObservable(Observable<T> diskObservable) {
    this.diskObservable = diskObservable;

    return this;
}

AbstractObservableBuilder<T> withNetworkObservable(Observable<T> networkObservable) {
    this.networkObservable = networkObservable;

    return this;
}

 

UtilModel is the required dependency, and so is added as a constructor parameter.

All right, all variables are set up, now we need to create the build function to actually create the observable:

@NonNull
public Observable<T> build() {
    if (diskObservable == null || networkObservable == null)
        throw new IllegalStateException("Network or Disk observable not provided");

    return Observable
            .defer(getReloadCallable())
            .switchIfEmpty(getConnectionObservable())
            .compose(applySchedulers());
}

Reloading Logic

First of all, we check if the caller forgot to add disk or network source and throw an exception if it is actually so. Next, we use defer operator to defer the call to getReloadCallable() so that this function is not executed until this observable is subscribed. Some articles over the internet directly use combine operators from Rx to make things easy, but this lazy calling is the most efficient way to do things because no actual call will be made to observables.

Secondly, you can easily test the behaviour in unit tests, by verifying that

  • no call to the network observable was made if the data inside disk observable was present; or
  • call to network observable was made even if there was data in disk observable if the reload request was made

These tests would not have been possible if we did not employ the lazy call technique because the calls to the observables and utilModel would have been made before the subscription to this model happen, in order to create this observable eagerly.

Now, let’s see what getReloadCallable does

@NonNull
private Callable<Observable<T>> getReloadCallable() {
    return () -> {
        if (reload)
            return Observable.empty();
        else
            return diskObservable
                .doOnNext(item -> 
                    Timber.d("Loaded %s From Disk on Thread %s",
                    item.getClass(), Thread.currentThread().getName()));
    };
}

 

This function’s role is to return the disk observable if the request is not a reload call, or else return an empty observable, so that force network request happens to reload the data

So it returns a Callable which encapsulates this logic, and besides that, it also adds a log if loading from disk about the type of item loaded and the thread it was loaded on

Connection and Database Switch Logic

In the next chain of operation, we make a switchIfEmpty call to getConnectionObservable(). Because of the above reloading logic, switchIfEmpty serves 2 purpose here, it changes to API call:

  • if db does not contain data
  • If it is a reload call

The observable we switch to is returned by getConnectionObservable() and its purpose is to check if the device is connected to the internet, and if it is, to forward the network request and if it is not, then return an Error Observable.

@NonNull
private Observable<T> getConnectionObservable() {
    if (utilModel.isConnected())
        return networkObservable
            .doOnNext(item -> Timber.d("Loaded %s From Network on Thread %s",
                item.getClass(), Thread.currentThread().getName()));
    else
        return Observable.error(new Throwable(Constants.NO_NETWORK));
}

We use util model to determine if we are connected to internet and take action accordingly. As you can see, here too, we log about the data being loaded and the thread information.

Threading

Lastly, we want to ensure that all processing happens on correct threads, and for that, we call compose with an Observable Transformer to make all requests happen on I/O scheduler and the data is received on Android’s Main Thread

@NonNull
private <V> ObservableTransformer<V, V> applySchedulers() {
    return observable -> observable
        .subscribeOn(Schedulers.io())
        .observeOn(AndroidSchedulers.mainThread());
}

And that’s all it takes to create a reactive, generic and reusable data handler for disk and network based operations. In the repository pattern we have employed in the Open Event Android Orga Application, all our data switching and handling code is delegated to it, with unit tests and integration tests testing the individual and cross component working in all cases.

If you want to learn more about other implementations, you can read these articles

Continue ReadingSmart Data Loading in Open Event Android Orga App

Using Semantic UI Modals in Open Event Frontend

Modals in semantic UI are used to display the content on the current view while temporarily blocking the interaction with the main view. In Open Event Frontend application, we’ve a ‘delete’ button which deletes the published event as soon as the button is pressed making all the data clean. Once the event is deleted by the user, it is not possible to restore it again. We encountered that this can create a whole lot of problem if the button is pressed unintentionally. So we thought of solving this by popping up a dialog box on button click with a warning and asking for user’s confirmation to delete the event. To implement the dialog box, we used semantic UI modals which helped in ensuring that the user correctly enters the name of the event in the given space to ensure that s/he wants to delete the event.

Since we want our modal to be customizable yet reusable so that it can be used anywhere in the project so we made it as the component called ‘event-delete-modal’. To do that we first need to start with the template.

The markup for the event-delete-modal looks like this:

<div class="content">
  <form class="ui form" autocomplete="off" {{action (optional formSubmit) on='submit' preventDefault=true}}>
    <div class="field">
      <div class="label">
        {{t 'Please enter the full name of the event to continue'}}
      </div>
      {{input type='text' name='confirm_name' value=confirmName required=true}}
    </div>
  </form>
</div>
<div class="actions">
  <button type="button" class="ui black button" {{action 'close'}}>
    {{t 'Cancel'}}
  </button>
  <button type="submit" class="ui red button" disabled={{isNameDifferent}} {{action deleteEvent}}>
    {{t 'Delete Event'}}
  </button>
</div>

The complete code for the template can be seen here.

The above code for the modal window is very similar to the codes which we write for creating the main window. We can see that the semantic UI collection “form” has also been used here for creating the form where the user can input the name of the event along with delete and cancel buttons. The delete button remains disabled until the time correct name of the event been written by the user to ensure that user really wants to delete the event. To cancel the modal we have used close callback method of semantic UI modal which itself closes it. Since the ‘isNameDifferent’ action is uniquely associated to this particular modal hence it’s been declared in the ‘event-delete-modal.js’ file.

The code for the  ‘isNameDifferent’ in ‘event-delete-modal.js’ file looks like this.

export default ModalBase.extend({
  isSmall         : true,
  confirmName     : '',
  isNameDifferent : computed('confirmName', function() {
    return this.get('confirmName').toLowerCase() !== this.get('eventName').toLowerCase();
  })
});

The complete code for the.js file can be seen here.

In the above piece of code, we have isSmall variable to ensure that our modal size is small so it can fit for all screen sizes and we have the implementation isNameDifferent() function. We can also notice that our modal is extending the ‘ModelBase’ class which has all the semantic UI modal settings and the callback methods to perform show, hide, close and open actions along with settings which will help modal to look the way we want it to be.  

The modal-base.js class looks like this.

  openObserver: observer('isOpen', function() {
   close() {
     this.set('isOpen', false);
   },
   actions: {
    close() {
      this.close();
    }
  },
  willInitSemantic(settings) {
    const defaultOptions = {
      detachable     : false,
      duration       : testing ? 0 : 200,
      dimmerSettings : {
        dimmerName : `${this.get('elementId')}-modal-dimmer`,
        variation  : 'inverted'
      },
      onHide: () => {
        this.set('isOpen', false);
        if (this.get('onHide')) {
          this.onHide();
        }
      },
      onVisible: () => {
        this.set('isOpen', true);
        this.$('[data-content]').popup({
          inline: true
        });
     }

The complete code for the .js file can be seen here.

In the above code, we can see that at the top we’ve an ‘openObserver’ function where we’re observing the behaviour of the modal and setting the variables according to the behavioural changes. Now, later we’re checking the status of those variables and performing the actions based on their value. For example, to close the modal we have a boolean variable ‘isOpen’ which is set to false now close() action will be called which closes the modal.  Similarly, in ‘willInitSemantic(settings)’ function we’re setting the modal’s setting like the effects, length, the details modal will display on popping out etc.
We’re here overriding the semantic UI moda settings like detachable, dimmerSettings, duration etc along with the callback methods like onHide(), onVisible() etc. to get the required results.

Finally, our event-delete-modal will look something like this.

Fig: Modal to delete the event

So to conclude this post, we can easily say that the modals are of great use. They can solve the purpose of displaying some alert or to input some values without interrupting the flow of the main page depending upon the requirements.

Additional Resources:

Blog post about Awesome Ember.js Form Components of Alex Speller: http://alexspeller.com/simple-forms-with-ember/

Continue ReadingUsing Semantic UI Modals in Open Event Frontend

Adding Tablet support for PSLab Android App

Making layouts compatible with tablet definitely, helps in increasing the target audience. Tablets are different than smartphones, they available in size as big as 7’’ and 10’’. This gives developers/designers a lot of screen space to work on which in turn can be utilized in a way different than smartphones. In the PSLab Oscilloscope Activity and in fact the entire application needs to have tablet support. To achieve these two approaches are used. They are as follow:

  1. Creating layouts compatible with the tablet
  2. Programmatically differentiate between phone and tablet

Creating layouts compatible with the Tablet

A series of following steps help to create layouts for the tablet with much ease

  1. Right click on layouts. Then move the cursor to new and select Layout resource file.

  1. A new resource file dialog box will appear. Under filename type the same name of the file for which you want to create tablet layout. Under directory name type layout-sw600dp for the layout of 7’’ tablet and layout-sw720dp for layout of 10’’ tablet.

  1. The Android Studio will automatically create a folder with two layouts, one for phone and another for tablet inside layouts folder. Now you can work on tablet layout and make the app compatible with the tablet.

Programmatically differentiate between Phone and Table

In Oscilloscope Activity of PSLab Android App, the dimensions of the layout are programmatically set. These dimensions are different from that should be used for the tablet. So, it is important for the app to know whether it’s operating on a phone or a tablet.

This can be achieved using the following steps.

  1. Right click on resources, move the cursor on new and select Android resource file.

  1. A new resource file dialog will appear, under file name type isTablet and press OK. Here we are creating a resource for a phone.

  1. In the XML file isTablet write the following code.

<?xml version="1.0" encoding="utf-8"?>
<resources>
   <bool name="isTablet">false</bool>
</resources>

This resource returns false when accessed.

  1. Repeat 1, 2 step and under new resource file dialog box type values-600dp. Then write the following code.

<?xml version="1.0" encoding="utf-8"?>
<resources>
   <bool name="isTablet">true</bool>
</resources>

This resource returns true when accessed.

  1. Now you can access this resource in Activity simply writing the following code.

boolean tabletSize = getResources().getBoolean(R.bool.isTablet);

tabletSize will be true if accessed in a tablet otherwise it will be false. Hence code can written accordingly.

By this way, we can find whether the application is running on tablet or phone programmatically.

Resources

 

Continue ReadingAdding Tablet support for PSLab Android App