Animations in Loklak Wok Android

Imagine an Activity popping out of nowhere suddenly in front of the user. And even more irritating, the user doesn’t even know whether a button was clicked. Though these are very small animation implementations but these animations enhance the user experience to a new level. This blog deals with the animations in Loklak Wok Android, a peer message harvester of Loklak Server.

Activity transition animation

Activity transition is applied when we move from a current activity to a new activity or just go back to an old activity by pressing back button.

In Loklak Wok Android, when user navigates for search suggestions from TweetHarvestingActivity to SuggestActivity, the new activity i.e. SuggestActivity comes from right side of the screen and the old one i.e. TweetHarvestingActivity leaves the screen through the left side. This is an example of left-right activity transition. For implementing this, two xml files which define the animations are created, enter.xml and exit.xml are created.

<set
   xmlns:android="http://schemas.android.com/apk/res/android"
   android:shareInterpolator="false">

   <translate
       android:duration="500"
       android:fromXDelta="100%"
       android:toXDelta="0%"/>
</set>

 

NOTE: The entering activity comes from right side, that’s why android:fromXDelta parameter is set to 100% and as the activity finally stays at extreme left, android:toXDelta parameter is set to 0%.

As the current activity, in this case TweetHarvestingActivity, leaves the screen from left to the negative of left. So, in exit.xml the android:fromXDelta parameter is set to 0% and android:toXDelta parameter is set to -100%.

Now, that we are done with defining the animations in xml, it’s time we apply the animations, which is really easy. The animations are applied by invoking Activity.overridePendingTransition(enterAnim, exitAnim) just after the startActivity method. For example, in openSuggestActivity

private void openSuggestActivity() {
   Intent intent = new Intent(getActivity(), SuggestActivity.class);
   startActivity(intent);
   getActivity().overridePendingTransition(R.anim.enter, R.anim.exit);
}

 

Touch Selectors

Using touch selectors background color of a button or any clickable can be changed, this way a user can see that the clickable responded to the click. The background is usually light accent color or a lighter shade of the icon present in button.

There are three states involved while a clickable is touched, pressed, activated and selected. And a default state, i.e. the clickable is not clicked. The background color of each state is defined in a xml file like media_button_selector, which is present in drawable directory.

<selector xmlns:android="http://schemas.android.com/apk/res/android">

   <item android:drawable="@color/media_button_touch_selector_backgroud" android:state_pressed="true"/>
   <item android:drawable="@color/media_button_touch_selector_backgroud" android:state_activated="true"/>
   <item android:drawable="@color/media_button_touch_selector_backgroud" android:state_selected="true"/>

   <item android:drawable="@android:color/transparent"/>
</selector>

 

The selector is applied by setting it as the background of a clickable, for example, touch selector applied on Location image button present in fragment_tweet_posting.xml .

<ImageButton
   android:layout_width="40dp"
   android:layout_height="40dp"
   
   android:background="@drawable/media_button_selector" />

 

Notice the change in the background color of the buttons when clicked.

Resources:

Some youtube videos for getting started:

Continue ReadingAnimations in Loklak Wok Android

Deleting Meilix Github Releases

Meilix is the repository which uses build script to generate community version of lubuntu as LXQT Desktop. Meilix-Generator is the webapp which uses Meilix to generate ISO and deploy it on Meilix Github Release. Then the webapp mail the link of the ISO to the user.
Increasing number of ISO will increase the number of releases which results in dirty looking of Meilix repository. So we need to delete older releases after certain interval of time to make the repository release page looks good and decrease unwanted space.
This releases_maintainer.sh script will do this work for us.

#!/usr/bin/env bash
set -e
echo "This is a script to delete obsolete meilix iso builds by Abishek V Ashok"
echo "You have to add an authorization token to make it functional."

# jq is the JSON parser we will be using
sudo apt-get -y install jq

# Storing the response to a variable for future usage
response=`curl https://api.github.com/repos/fossasia/meilix/releases | jq '.[] | .id, .published_at'`

index=1  # when index is odd, $i contains id and when it is even $i contains published_date
delete=0 # Should we delete the release?
current_year=`date +%Y`  # Current year eg) 2001
current_month=`date +%m` # Current month eg) 2
current_day=`date +%d`   # Current date eg) 24

for i in $response; do
    if [ $((index % 2)) -eq 0 ]; then # We get the published_date of the release as $i's value here
        published_year=${i:1:4}
        published_month=${i:6:2}
        published_day=${i:9:2}

        if [ $published_year -lt $current_year ]; then
             let "delete=1"
        else
            if [ $published_month -lt $current_month ]; then
                let "delete=1"
            else
                if [ $((current_day-$published_day)) -gt 10 ]; then
                    let "delete=1"
                fi
            fi
        fi
    else # We get the id of the release as $i`s value here
        if [ $delete -eq 1 ]; then
            curl -X DELETE -H "Authorization: token $KEY" https://api.github.com/repos/fossasia/meilix/releases/$i
            let "delete=0"
        fi
    fi
    let "index+=1"
done

This code uses Github API to curl the Meilix releases. Github API is very useful in providing lots of information but here we are only concerned with the release date and time of the build.
Then we setup a condition if that satisfies then the release will automatically will get deleted.

For taking care of the authentication, a token has been uploaded to the Travis settings of Meilix of FOSSASIA.

The personal token has been generated by a user with write access to the repository with repo scope token.

This sort out the issue of having bulk of releases in the Meilix repository of FOSSASIA.

References:
Users Github API  by REST API v3
Repo Github API   by REST API v3

Continue ReadingDeleting Meilix Github Releases

List all the Users Registered on SUSI.AI

In this blog, I’ll be telling on how SUSI admins can access list of all the registered users from SUSI-server. Following this, they may modify/edit user role of any registered user.

What is User Role?

A UserRole defines the servlet access right. Not all users are allowed to access all the data and services. For  example, To list all the users, minimal user role expected is ADMIN. This classification of users are inspired by the wikipedia User Access Levels, see https://en.wikipedia.org/wiki/Wikipedia:User_access_levels.While querying SUSI, Users are classified into 7 different categories, namely :

  • BOT
  • ANONYMOUS
  • USER  
  • REVIEWER
  • ACCOUNTCREATOR
  • ADMIN
  • BUREAUCRAT

* Please see that these are as of the date of publish of this blog. These are subject to change, which is very unlikely.

All the users who are not logged in but interacting with SUSI are anonymous users. These are only subject to chat with SUSI, login, signup or may use forgot password service. Once a user login to the server, a token is generated and sent back to client to maintain the identity, hence acknowledging them. Privileged users are those who have special rights with them. These are more like moderators with much special rights than any other user. At the top level of the hierarchy are the admins. These users have more rights than anyone. They can change role of any other user, override decision of any privileged user as well.

Let us now look at the control flow of this.

First things first, make a component of User List in the project. Let us name it ListUsers and since it has to be accessible by those users who possess ADMIN rights, you will find it enclosed in Admin package in components folder. Open up

index.js file, import Listusers component  and add route to it in the following way :

...//other import statements
import ListUser from "./components/Admin/ListUser/ListUser";
...//class definition and other methods
<Route path="/listUser" component={ListUser}/>
//other routes defined

Find a suitable image for “List Users” option and add the option for List Users in static appbar component along with the image. We have used Material UI’s List image in our project.

...// other imports

import List from 'material-ui/svg-icons/action/list';

Class and method definition

<MenuItem primaryText="List Users"
          onTouchTap={this.handleClose}
          containerElement={<Link to="/listUser" />}
                rightIcon={<List/>}
      />

...//other options in top right corner menu

Above code snippet will add an option to redirect admins to ‘/listUsers’ route. Let us now have a closer look at functionality of both client and server. By now you must have known what ComponentDidMount does. {If not, I’ll tell you. This is a method which is given first execution after the page is rendered. For more information, visit this link}. As mentioned earlier as well that this list will be available only for admins and may be even extended for privileged users but not for anonymous or any other user, an AJAX call is made to server in ComponentDidMount of ‘listuser’ route which returns the base user role of current user. If user is an Admin, another method, fetchUsers() is called.

let url;
        url = "http://api.susi.ai/aaa/account-permissions.json";
        $.ajax({
            url: url,
            dataType: 'jsonp',
            jsonpCallback: 'py',
            jsonp: 'callback',
            crossDomain: true,
            success: function (response) {
                console.log(response.userRole)
                if (response.userRole !== "admin") {
                    console.log("Not an admin")
                } else {
                    this.fetchUsers();
                    console.log("Admin")
                }
            }.bind(this),
});

In fetchUsers method, an AJAX call is made to server which returns username in JSONArray. The response looks something likes this :

{
	"users" : {
		"email:""test@test.com",
...
},
"Username":["test@test.com", "test@anothertest.com"...]
}

Now, only rendering this data in a systematic form is left. To give it a proper look, we have used material-ui’s table. Import Table, TableBody, TableHeader,

   TableHeaderColumn, TableRow, TableRowColumn from material-ui/table.

In fetchUsers method, response is catched in data Oblect. Now the keys are extracted from the JSON response and mapped with an array. Iterating through array received as username array, we get list of all the registered users. Now, popuulate the data in the table you generated.

return (
                        <TableRow key={i}>
                            <TableRowColumn>{++i}>
                            <TableRowColumn>{name}</TableRowColumn>
                            <TableRowColumn> </TableRowColumn>
                            <TableRowColumn> </TableRowColumn>
                            <TableRowColumn> </TableRowColumn>
                            <TableRowColumn> </TableRowColumn>
                        </TableRow>
                    )

Above piece of code may help you while populating the table. These details are returned from susi server which gets a list of all the registered in the following manner. First, it checks if base url of this user is something apart from admin. If not, it returns error which may look like this :

Failed to load resource: the server responded with a status of 401 (Base user role not sufficient. Your base user role is 'ANONYMOUS', your user role is 'anonymous')

Otherwise, it will generate a client identity, use to to get an authorization object which will loop through authorization.json file and return all the users encoded as JSONArray.

Additional Resources

  1. Official Material UI Documentation on Tables from marterial-ui
  2. Answer by Marco Bonelli on Stackoverflow on How to map JSON response in JavaScript?
  3. Answer by janpieter_z on Stackoverflow – on Render JSON data in ReactJS table
Continue ReadingList all the Users Registered on SUSI.AI

User Guide for the PSLab Remote-Access Framework

The remote-lab framework of the pocket science lab has been designed to enable user to access their devices remotely via the internet. The pslab-remote repository includes an API server built with Python-Flask and a webapp that uses EmberJS. This post is a guide for users who wish to test the framework. A series of blog posts have been previously written which have explored and elaborated various aspect of the remote-lab such as designing the API server, remote execution of function strings, automatic deployment on various domains etc. In this post, we shall explore how to execute function strings, execute example scripts, and write a script ourselves.

A live demo is hosted at pslab-remote.surge.sh . The API server is hosted at pslab-stage.herokuapp.com, and an API reference which is being developed can be accessed at pslab-stage.herokuapp.com/apidocs . A screencast of the remote lab is also available

Create an account

Signing up at this point is very straightforward, and does not include any third party verification tools since the framework is under active development, and cannot be claimed to be ready for release yet.

Click on the sign-up button, and provide a username, email, and password. The e-mail will be used as the login-id, and needs to be unique.

Login to the remote lab

Use the email-id used for signing up, enter the password, and the app will redirect you to your new home-page, where you will be greeted with a similar screen.

Your home-page

On the home-page, you will find that the first section includes a text box for entering a function string, and an execute button. Here, you can enter any valid PSLab function such as `get_resistance()` , and click on the execute button in order to run the function on the PSLab device connected to the API server, and view the results. A detailed blog post on this process can be found here.

Since this is a new account, no saved scripts are present in the Your Scripts section. We will come to that shortly, but for now, there are some pre-written example scripts that will let you test them as well as view their source code in order to copy into your own collection, and modify them.

Click on the play icon next to `multimeter.py` in order to run the script. The eye icon to the right of the row enables you to view the source code, but this can also be done while the app is running. The multimeter app looks something like this, and you can click on the various buttons to try them out.

You may also click on the Source Code tab in order to view the source

Create and execute a small python script

We can now try to create a simple script of our own. Click on the `New Python Script` button in the top-bar to navigate to a page that will allow you to create and save your own scripts. We shall write a small 3-line code to print some sinusoidal coordinates, save it, and test it. Copy the following code for a sine wave with 30 points, and publish your script.

import numpy as np
x=np.linspace(0,2*np.pi,30)
print (x, np.sin(x))

Create a button widget and associate a callback to the get_voltage function

A small degree of object oriented capabilities have also been added, and the pslab-remote allows you to create button widgets and associate their targets with other widgets and labels.
The multimeter demo script uses this feature, and a single line of code suffices to demonstrate this feature.

button('Voltage on CH1 >',"get_voltage('CH1')","display_number")

You can copy the above line into a new script in order to try it out.

Associate a button’s callback to the capture routines, and set the target as a plot

The callback target for a button can be set to point to a plot. This is useful if the callback involves arrays such as those returned by the capture routines.

Example code to show a sine wave in a plot, and make button which will replace it with captured data from the oscilloscope:

import numpy as np
x=np.linspace(0,2*np.pi,30)
plt = plot(x, np.sin(x))
button('capture 1',"capture1('CH1',100,10)","update-plot",target=plt)
Figure: Demo animation from the plot_test example. Capture1 is connected to the plot shown.
Resources
Continue ReadingUser Guide for the PSLab Remote-Access Framework

Markdown Support for Experiment Docs in PSLab Android

The PSLab Android App and the PSLab Desktop App come with built-in experiments which include the experiment setups as well as the experiment docs. The experiment docs for PSLab have been written in the Markdown format. So, the markdown support had to be enabled in the PSLab Android App.

There are numerous markdown file renderers for android. The most popular among them is MarkdownView (https://github.com/falnatsheh/MarkdownView) which is an  open-source service.

This blog covers how to enable the support for markdown in apps and use to generate elegant documentation.

Enabling MarkdownView

MarkdownView can be enabled by simply adding a dependency in the build.gradle file

compile 'us.feras.mdv:markdownview:1.1.0'

 

Creating the layout file

The layout file for supporting a markdown file is fairly simple. The inclusion of the above dependency simplifies the things. The view holder for markdown is created and an id is assigned to it.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
   xmlns:android="http://schemas.android.com/apk/res/android"
   xmlns:app="http://schemas.android.com/apk/res-auto"
   android:orientation="vertical"
   android:layout_width="match_parent"
   android:layout_height="match_parent">

   <br.tiagohm.markdownview.MarkdownView
       android:layout_width="match_parent"
       app:escapeHtml="false"
       android:layout_height="match_parent"
       android:id="@+id/perform_experiment_md" />
</LinearLayout>

 

Loading the markdown file

In order to load the markdown file, a MarkdownView object is created. Since, in the PSLab Android app, markdown files which form the documentation part are a part of the experiments. So, the files are displayed in the documentation fragment of the experiments.

private String mdFile;
private MarkdownView mMarkdownView;

public static ExperimentDocFragment newInstance(String mdFile) {
   ExperimentDocFragment experimentDocFragment = new ExperimentDocFragment();
   experimentDocFragment.mdFile = mdFile;
   return experimentDocFragment;
}

 

The MarkdownView object created is assigned to markdown viewholder of the relevant layout file. Here, the layout file was named experiment_doc_md and the view holder was assigned the id perform_experiment_md. The markdown files were stored in the assets directory of the app and the files were loaded from the there.

public View onCreateView(LayoutInflater inflater, @Nullable ViewGroup container, @Nullable Bundle savedInstanceState) {
   View view = inflater.inflate(R.layout.experiment_doc_md, container, false);
   mMarkdownView = (MarkdownView) view.findViewById(R.id.perform_experiment_md);
   mMarkdownView.loadMarkdownFromAsset("capacitance.md");
   return view;
}

 

The available methods in markdown view are

  • loadMarkdown – loads directly from the content in the string 

mMarkdownView.loadMarkdown("**MarkdownView**");

 

  • loadMarkdownFromAsset – loads markdown files located in the assets directory of the app

mMarkdownView.loadMarkdownFromAsset("markdown1.md");

 

  • loadMarkdownFromFile – loads markdown from a file stored in the app not present in the assets directory

mMarkdownView.loadMarkdownFromFile(new File());

 

  • loadMarkdownFromUrl – loads markdown from the specified URL (requires internet connection, as file is loaded from the web)

mMarkdownView.loadMarkdownFromUrl("url");

 

Important points for consideration

  • Avoid using elements of GitHub Flavoured Markdown (GFM) as it is not fully supported. It is better to stick to the traditional markdown style.
  • While adding images in the markdown files, avoid using specific dimensions as the images may not load properly in some cases due to the wide variety of screen sizes in android devices.
  • It is better to store the Markdown files to be loaded in the assets directory of the app and load it from there instead of the other methods mentioned above.

References

  1. A comprehensive markdown tutorial to learn markdown scripting https://www.markdowntutorial.com/
  2. MarkdownView repository on Github by tiagohm https://github.com/tiagohm/MarkdownView
  3. Learn more about Github Flavoured Markdown (GFM) https://guides.github.com/features/mastering-markdown/
Continue ReadingMarkdown Support for Experiment Docs in PSLab Android

SUSI.AI User Roles and How to Modify Them

In this blog, I discuss what is ‘user-role’ in SUSI.AI, what are the various roles and how SUSI admins can modify/update a user’s roles.

What is User Role?

A UserRole defines the servlet access right. Not all users are allowed to access all the data and services. For  example, To list all the users, minimal user role expected is ADMIN. This classification of users are inspired by the wikipedia User Access Levels, see https://en.wikipedia.org/wiki/Wikipedia:User_access_levels.While querying SUSI, Users are classified into 7 different categories, namely :

  • BOT
  • ANONYMOUS
  • USER  
  • REVIEWER
  • ACCOUNTCREATOR
  • ADMIN
  • BUREAUCRAT

* Please see that these are as of the date of publish of this blog. These are subject to change, which is very unlikely.

If SUSI is active as a bot on some bot integrated platform (like line or kik), the user role assigned to it will be that of BOT. This user role just has technical access to the server.

All the users who are not logged in but interacting with SUSI are ANONYMOUS users. These are only subject to chat, login and signup. They may use forgot password service and reset password services as well.

Once a user login to the server, a token is generated and sent back to client to maintain the identity, hence acknowledging them as USER(s).

Users with role assigned as “REVIEWERS” are expected to manage the Skill CMS. There might be some dispute or conflict in a skill. REVIEWERS then take the access of skill data and finalise the conflict there itself for smooth functionality.

ADMIN users are those who have special rights with them. These are more like moderators with much special rights than any other user.

At the top level of the hierarchy are the BUREAUCRATS. These users have more rights than anyone. They can change role of any other user, override decision of any ADMIN user as well. Both admins and bureaucrats have the access to all the settings file on the server. They not only can look at the list, but also download and upload them. Now these users also have right to upgrade or downgrade any other user as well.

All these user roles are defined in UserRole.java file.

In each request received by the server, the user role of user making the request is compared with the minimal user role in getMinimalUserRole() method. This method is defined in AbstractAPIHandler which validates if a user is allowed to access a particular servlet or not.

private void process(HttpServletRequest request, HttpServletResponse response, Query query) throws ServletException, IOException {
	// object initialisation and comparsions
// user authorization: we use the identification of the user to get the assigned authorization
        Authorization authorization = DAO.getAuthorization(identity);

        if (authorization.getUserRole().ordinal() < minimalUserRole.ordinal()) {
        	response.sendError(401, "Base user role not sufficient. Your base user role is '" + authorization.getUserRole().name() + "', your user role is '" + authorization.getUserRole().getName() + "'");
			return;
        }
// evaluations based on other request parameters.
}

Now that we know about what User Roles actually are, let us look at how the servlet which allows the users {with at least ADMIN login} to change user role of some other user works.

In the request, 2 parameters are expected. These are :

  • user : email id of the user whose role has to be changed.
  • role : new role which will be assigned to this user.

Using a switch case, we identify the user role which is requested. If role is found to be null or any other value apart from “bot”, “anonymous”, “user”, “reviewer”, “accountcreator”, “admin” or “bureaucrat”, an error with error code 400 and error message “Bad User role” is thrown.

In the next steps, server generates client identity in order to get the corresponding Authorization object. If the user is not found in the database, again an error is thrown with error code 400 and error message “role not found

ClientCredential credential = new ClientCredential(ClientCredential.Type.passwd_login, userTobeUpgraded);
            ClientIdentity identity = new ClientIdentity(ClientIdentity.Type.email, credential.getName());
            if (!DAO.hasAuthorization(identity)) {
                throw new APIException(400, "Username not found");
            }

By now, server is clear with the user identity and new role to be assigned. Since the user role is defined in authorization.json file, we overwrite the existing user role and finally server sends back the new user role of the use

Authorization auth = DAO.getAuthorization(identity);
            try {
                auth.setUserRole(userRole);
            } catch (IllegalArgumentException e) {
                throw new APIException(400, "role not found");
            }

            // Print Response
            result.put("newDetails", auth.getJSON());
            result.put("accepted", true);
            result.put("message", "User role changed successfully!!");
            return new ServiceResponse(result);

 

Continue ReadingSUSI.AI User Roles and How to Modify Them

Automatic Signing and Publishing of Android Apps from Travis

As I discussed about preparing the apps in Play Store for automatic deployment and Google App Signing in previous blogs, in this blog, I’ll talk about how to use Travis Ci to automatically sign and publish the apps using fastlane, as well as how to upload sensitive information like signing keys and publishing JSON to the Open Source repository. This method will be used to publish the following Android Apps:

Current Project Structure

The example project I have used to set up the process has the following structure:

It’s a normal Android Project with some .travis.yml and some additional bash scripts in scripts folder. The update-apk.sh file is standard app build and repo push file found in FOSSASIA projects. The process used to develop it is documented in previous blogs. First, we’ll see how to upload our keys to the repo after encrypting them.

Encrypting keys using Travis

Travis provides a very nice documentation on encrypting files containing sensitive information, but a crucial information is buried below the page. As you’d normally want to upload two things to the repo – the app signing key, and API JSON file for release manager API of Google Play for Fastlane, you can’t do it separately by using standard file encryption command for travis as it will override the previous encrypted file’s secret. In order to do so, you need to create a tarball of all the files that need to be encrypted and encrypt that tar instead. Along with this, before you need to use the file, you’ll have to decrypt in in the travis build and also uncompress it for use.

So, first install Travis CLI tool and login using travis login (You should have right access to the repo and Travis CI in order to encrypt the files for it)

Then add the signing key and fastlane json in the scripts folder. Let’s assume the names of the files are key.jks and fastlane.json

Then, go to scripts folder and run this command to create a tar of these files:

tar cvf secrets.tar fastlane.json key.jks

 

secrets.tar will be created in the folder. Now, run this command to encrypt the file

travis encrypt-file secrets.tar

 

A new file secrets.tar.enc will be created in the folder. Now delete the original files and secrets tar so they do not get added to the repo by mistake. The output log will show the the command for decryption of the file to be added to the .travis.yml file.

Decrypting keys using Travis

But if we add it there, the keys will be decrypted for each commit on each branch. We want it to happen only for master branch as we only require publishing from that branch. So, we’ll create a bash script prep-key.sh for the task with following content

#!/bin/sh
set -e

export DEPLOY_BRANCH=${DEPLOY_BRANCH:-master}

if [ "$TRAVIS_PULL_REQUEST" != "false" -o "$TRAVIS_REPO_SLUG" != "iamareebjamal/android-test-fastlane" -o "$TRAVIS_BRANCH" != "$DEPLOY_BRANCH" ]; then
    echo "We decrypt key only for pushes to the master branch and not PRs. So, skip."
    exit 0
fi

openssl aes-256-cbc -K $encrypted_4dd7_key -iv $encrypted_4dd7_iv -in ./scripts/secrets.tar.enc -out ./scripts/secrets.tar -d
tar xvf ./scripts/secrets.tar -C scripts/

 

Of course, you’ll have to change the commands and arguments according to your need and repo. Specially, the decryption command keys ID

The script checks if the repo and branch are correct, and the commit is not of a PR, then decrypts the file and extracts them in appropriate directory

Before signing the app, you’ll need to store the keystore password, alias and key password in Travis Environment Variables. Once you have done that, you can proceed to signing the app. I’ll assume the variable names to be $STORE_PASS, $ALIAS and $KEY_PASS respectively

Signing App

Now, come to the part in upload-apk.sh script where you have the unsigned release app built. Let’s assume its name is app-release-unsigned.apk.Then run this command to sign it

cp app-release-unsigned.apk app-release-unaligned.apk
jarsigner -verbose -tsa http://timestamp.comodoca.com/rfc3161 -sigalg SHA1withRSA -digestalg SHA1 -keystore ../scripts/key.jks -storepass $STORE_PASS -keypass $KEY_PASS app-release-unaligned.apk $ALIAS

 

Then run this command to zipalign the app

${ANDROID_HOME}/build-tools/25.0.2/zipalign -v -p 4 app-release-unaligned.apk app-release.apk

 

Remember that the build tools version should be the same as the one specified in .travis.yml

This will create an apk named app-release.apk

Publishing App

This is the easiest step. First install fastlane using this command

gem install fastlane

 

Then run this command to publish the app to alpha channel on Play Store

fastlane supply --apk app-release.apk --track alpha --json_key ../scripts/fastlane.json --package_name com.iamareebjamal.fastlane

 

You can always configure the arguments according to your need. Also notice that you have to provide the package name for Fastlane to know which app to update. This can also be stored as an environment variable.

This is all for this blog, you can read more about travis CLI, fastlane features and signing process in these links below:

Continue ReadingAutomatic Signing and Publishing of Android Apps from Travis

Using Universal Image Loader to Display Image on Phimpme Android Application

In Phimpme Android application we needed to load image on the sharing Activity fast so that there won’t be any delay that is visible by a user in the loading of any activity. We used Universal Image Loader to load the image on the sharing Activity to load Image faster.

Getting Universal Image Loader

To get Universal Image Loader in your application go to Gradle(app)-> and then add the following line of code inside dependencies:

dependencies{

compile 'com.nostra13.universalimageloader:universal-image-loader:1.9.4'

}

Initialising Universal Image Loader and Displaying Image

To display image on using Universal Image Loader we need to convert the image into a URI from a file path:

saveFilePath = getIntent().getStringExtra(EXTRA_OUTPUT);
Uri uri = Uri.fromFile(new File(saveFilePath));

How an image should be displayed

We need to display the image in such a way that it covers the whole image view in the sharing Activity. The image should be zoomed out. The quality of the image should not be distorted or reduced. The image should look as it is. The image should be zoomable so that the user can pinch to zoom in and zoom out. For the image to adjust the whole Image View we set ImageScaleType.EXACTLY_STRETCHED. We will also set cacheInMemory to true and cacheOnDisc to true.  

private void initView() {
   saveFilePath = getIntent().getStringExtra(EXTRA_OUTPUT);
   Uri uri = Uri.fromFile(new File(saveFilePath));
   ImageLoader imageLoader = ((MyApplication)getApplicationContext()).getImageLoader();
   DisplayImageOptions options = new DisplayImageOptions.Builder()
           .cacheOnDisc(true)
           .imageScaleType(ImageScaleType.EXACTLY_STRETCHED)
           .cacheInMemory(true)
           .bitmapConfig(Bitmap.Config.RGB_565)
           .build();
   imageLoader.displayImage(uri.toString(), shareImage, options);
}

Image Loader function in MyApplication class:

private void initImageLoader() {
   File cacheDir = com.nostra13.universalimageloader.utils.StorageUtils.getCacheDirectory(this);
   int MAXMEMONRY = (int) (Runtime.getRuntime().maxMemory());
   // System.out.println("dsa-->"+MAXMEMONRY+"   "+(MAXMEMONRY/5));//.memoryCache(new
   // LruMemoryCache(50 * 1024 * 1024))
   DisplayImageOptions defaultOptions = new DisplayImageOptions.Builder()
           .cacheInMemory(true)
           .cacheOnDisk(true)
           .build();

   ImageLoaderConfiguration config = new ImageLoaderConfiguration.Builder(
           this).memoryCacheExtraOptions(480, 800).defaultDisplayImageOptions(defaultOptions)
           .diskCacheExtraOptions(480, 800, null).threadPoolSize(3)
           .threadPriority(Thread.NORM_PRIORITY - 2)
           .tasksProcessingOrder(QueueProcessingType.FIFO)
           .denyCacheImageMultipleSizesInMemory()
           .memoryCache(new LruMemoryCache(MAXMEMONRY / 5))
           .diskCache(new UnlimitedDiskCache(cacheDir))
           .diskCacheFileNameGenerator(new HashCodeFileNameGenerator()) // default
           .imageDownloader(new BaseImageDownloader(this)) // default
           .imageDecoder(new BaseImageDecoder(false)) // default
           .defaultDisplayImageOptions(DisplayImageOptions.createSimple()).build();

   this.imageLoader = ImageLoader.getInstance();
   imageLoader.init(config);
}

Image View in Sharing Activity XML file:

In the Sharing Activity Xml resource, we need to specify the width of the image view and the height of the image view. In Phimpme Android application we are using ImageViewTouch so that we have features like touch to zoom in zoom out. The scale type of the imageView is centerCrop so that image which is loaded is zoomed out and focus is in the center of the image.  

<org.fossasia.phimpme.editor.view.imagezoom.ImageViewTouch
   android:layout_width="match_parent"
   android:layout_height="wrap_content"
   android:id="@+id/share_image"
   android:layout_below="@+id/toolbar"
   android:layout_weight="10"
   android:layout_alignParentStart="true"
   android:scaleType="centerCrop"/>

Conclusion

To load image faster on any ImageView we should use Universal Image Loader. It helps load the activity faster and allows many features as discussed in the blog.

 

Github

Resources

Continue ReadingUsing Universal Image Loader to Display Image on Phimpme Android Application

Auto Updating SUSI Android APK and App Preview on appetize.io

This blog will cover the way in which the SUSI Android APK is build automatically after each commit and pushed to “apk” branch in the github repo. Other thing which will be covered is that how the app preview on appetize.io can be updated after each commit. This is basically for the testers who wish to test the SUSI Android App. There are four ways to test the SUSI Android App. One is to simply download the alpha version of the app from the Google PlayStore. Here is the link to the app. Join the alpha testing and report bugs on the github issue tracker of the repo. Other way is to build the app from Android Studio but you may need to set the complete project. If you are looking to contribute in the project, this is the advised way to test the app. The other two ways are explained below.

Auto Building of APK and pushing to “apk” branch

We have written a script which does following steps whenever a PR is merged:

  1. Checks if the commit is of a PR or a commit to repo
  2. If not of PR, configures a user whose github account will be used to push the APKs.
  3. Clones the repo, generates the debug and release APK.
  4. Deletes everything in the apk branch.
  5. Commits and Pushes new changes to apk branch.

This script is written for people or testers who do not have android studio installed in their computer and want to test the app. So, they can directly download the apk from the apk branch and install it in their phone. The APK is always updated after each commit. So, whenever a tester downloads the APK from apk branch, he will always get the latest app.

if [[ $CIRCLE_BRANCH != pull* ]]
then
    git config --global user.name "USERNAME"
    git config --global user.email "EMAIL"

    git clone --quiet --branch=apk https://USERNAME:$GITHUB_API_KEY@github.com/fossasia/susi_android apk > /dev/null
    ls
    cp -r ${HOME}/${CIRCLE_PROJECT_REPONAME}/app/build/outputs/apk/app-debug.apk apk/susi-debug.apk
    cp -r ${HOME}/${CIRCLE_PROJECT_REPONAME}/app/build/outputs/apk/app-release-unsigned.apk apk/susi-release.apk
    cd apk

    git checkout --orphan workaround
    git add -A

    git commit -am "[Circle CI] Update Susi Apk"

    git branch -D apk
    git branch -m apk

    git push origin apk --force --quiet > /dev/null
fi

Auto Updating of App Preview on appetize.io

The APKs generated in the above step can now be used to set up the preview of the app on the appetize.io. Appetize.io is an online simulator to run mobile apps ( IOS and Android). Appetize.io provides a nice virtual mobile frame to run native apps with various options like screen size, mobile, OS version, etc. Appetize.io provides some API to update/publish the app. In SUSI, we once uploaded the app on appetize.io and now we are using the API provided by them to update the APK everytime a commit is pushed in the repository.

API information (Derived from official docs of appetize.io):

You may upload a new version of an existing app, or update app settings.

Send an HTTP POST request to

https://APITOKEN@api.appetize.io/v1/apps/PUBLICKEY

Replace APITOKEN with your API token and PUBLICKEY with the public key of the app you’re updating. Your API token must be permissioned to the same account as was used to upload the app. The POST body must be a JSON object. To delete a previously set field, use a value of null.

Optional Fields

  1. url: (string) a publicly accessible link to your .zip, .tar.gz, or .apk file, used to upload a new version of your app.
  2. note: (string) a note for your own purposes, will appear on your management dashboard.

For the url parameter, we have used https://github.com/fossasia/susi_android/raw/apk/susi-debug.apk and note can be anything. We have used Update SUSI Preview.

curl https://$APPETIZE_API_TOKEN@api.appetize.io/v1/apps/mbpprq4xj92c119j7nxdhttjm0 -H 'Content-Type: application/json' -d '{"url":"https://github.com/fossasia/susi_android/raw/apk/susi-debug.apk", "note": "Update SUSI Preview"}'

Summary

This blog covered about how to implement an automatic structure to generate APKs for testing and using that APK to build a preview on websites like appetize.io and then using the APIs provided by them to update the APK after each PR merge in the repo. Check out the resources below to learn more about the topic. So, if you are thinking of contributing to SUSI Android App, this may help you a little in testing the app. But if not, then you can also use the similar technique for your android app as well and ease the life of testers.

Resources

  1. Docs of appetize.io to learn more about the API https://appetize.io/docs
  2. Tutorial on using curl to make API requests https://curl.haxx.se/docs/httpscripting.html
  3. Tutorial on writing basic shell scripts https://ryanstutorials.net/bash-scripting-tutorial/
Continue ReadingAuto Updating SUSI Android APK and App Preview on appetize.io

Adding Tweet Streaming Feature in World Mood Tracker loklak App

The World Mood Tracker was added to loklak apps with the feature to display aggregated data from the emotion classifier of loklak server. The next step in the app was adding the feature to display the stream of Tweets from a country as they are discovered by loklak. With the addition of stream servlet in loklak, it was possible to utilise it in this app.

In this blog post, I will be discussing the steps taken while adding to introduce this feature in World Mood Tracker app.

Props for WorldMap component

The WorldMap component holds the view for the map displayed in the app. This is where API calls to classifier endpoint are made and results are displayed on the map. In order to display tweets on clicking a country, we need to define react props so that methods from higher level components can be called.

In order to enable props, we need to change the constructor for the component –

export default class WorldMap extends React.Component {
    constructor(props) {
        super(props);
        ...
    }
    ...
}

[SOURCE]

We can now pass the method from parent component to enable streaming and other components can close the stream by using props in them –

export default class WorldMoodTracker extends React.Component {
    ...
    showStream(countryName, countryCode) {
        /* Do something to enable streaming component */
        ...
    }
 
    render() {
        return (
             ...
                <WorldMap showStream={this.showStream}/>
             ...
        )
    }
}

[SOURCE]

Defining Actions on Clicking Country Map

As mentioned in an earlier blog post, World Mood Tracker uses Datamaps to visualize data on a map. In order to trigger a piece of code on clicking a country, we can use the “done” method of the Datamaps instance. This is where we use the props passed earlier –

done: function(datamap) {
    datamap.svg.selectAll('.datamaps-subunit').on('click', function (geography) {
        props.showStream(geography.properties.name, reverseCountryCode(geography.id));
    })
}

[SOURCE]

The name and ID for the country will be used to display name and make API call to stream endpoint respectively.

The StreamOverlay Component

The StreamOverlay components hold all the utilities to display the stream of Tweets from loklak. This component is used from its parent components whose state holds info about displaying this component –

export default class WorldMoodTracker extends React.Component {
    ...
    getStreamOverlay() {
        if (this.state.enabled) {
            return (<StreamOverlay
                show={true} channel={this.state.channel}
                country={this.state.country} onClose={this.onOverlayClose}/>);
        }
    }

    render() {
        return (
            ...
                {this.getStreamOverlay()}
            ...
        )
    }
}

[SOURCE]

The corresponding props passed are used to render the component and connect to the stream from loklak server.

Creating Overlay Modal

On clicking the map, an overlay is shown. To display this overlay, react-overlays is used. The Modal component offered by the packages provides a very simple interface to define the design and interface of the component, including style, onclose hook, etc.

import {Modal} from 'react-overlays';

<Modal aria-labelledby='modal-label'
    style={modalStyle}
    backdropStyle={backdropStyle}
    show={true}
    onHide={this.close}>
    <div style={dialogStyle()}>
        ...
    </div>
</Modal>

[SOURCE]

It must be noted that modalStyle and backdropStyle are React style objects.

Dialog Style

The dialog style is defined to provide some space at the top, clicking where, the overlay is closed. To do this, vertical height units are used –

const dialogStyle = function () {
    return {
        position: 'absolute',
        width: '100%',
        top: '5vh',
        height: '95vh',
        padding: 20
        ...
    };
};

[SOURCE]

Connecting to loklak Tweet Stream

loklak sends Server Sent Events to clients connected to it. To utilise this stream, we can use the natively supported EventSource object. Event stream is started with the render method of the StreamOverlay component –

render () {
    this.startEventSource(this.props.channel);
    ...
}

[SOURCE]

This channel is used to connect to twitter/country/<country-ID> channel on the stream and then this can be passed to EventStream constructor. On receiving a message, a list of Tweets is appended and later rendered in the view –

startEventSource(country) {
    let channel = 'twitter%2Fcountry%2F' + country;
    if (this.eventSource) {
        return;
    }
    this.eventSource = new EventSource(host + '/api/stream.json?channel=' + channel);
    this.eventSource.onmessage = (event) => {
        let json = JSON.parse(event.data);
        this.state.tweets.push(json);
        if (this.state.tweets.length > 250) {
            this.state.tweets.shift();
        }
        this.setState(this.state);
    };
}

[SOURCE]

The size of the list is restricted to 250 here, so when a newer Tweet comes in, the oldest one is chopped off. And thanks to fast DOM actions in React, the rendering doesn’t take much time.

Rendering Tweets

The Tweets are displayed as simple cards on which user can click to open it on Twitter in a new tab. It contains basic information about the Tweet – screen name and Tweet text. Images are not rendered as it would make no sense to load them when Tweets are coming at a high rate.

function getTweetHtml(json) {
    return (
        <div style={{padding: '5px', borderRadius: '3px', border: '1px solid black', margin: '10px'}}>
            <a href={json.link} target="_blank">
            <div style={{marginBottom: '5px'}}>
                <b>@{json['screen_name']}</b>
            </div>
            <div style={{overflowX: 'hidden'}}>{json['text']}</div>
            </a>
        </div>
    )
}

[SOURCE]

They are rendered using a simple map in the render method of StreamOverlay component –

<div className={styles.container} style={{'height': '100%', 'overflowY': 'auto',
    'overflowX': 'hidden', maxWidth: '100%'}}>
    {this.state.tweets.reverse().map(getTweetHtml)}
</div>

[SOURCE]

Closing Overlay

With the previous setup in place, we can now see Tweets from the loklak backend as they arrive. But the problem is that we will still be connected to the stream when we click-close the modal. Also, we would need to close the overlay from the parent component in order to stop rendering it.

We can use the onclose method for the Modal here –

close() {
    if (this.eventSource) {
        this.eventSource.close();
        this.eventSource = null;
    }
    this.props.onClose();
}

[SOURCE]

Here, props.onClose() disables rendering of StreamOverlay in the parent component.

Conclusion

In this blog post, I explained how the flow of props are used in the World Mood Tracker app to turn on and off the streaming in the overlay defined using react-overlays. This feature shows a basic setup for using the newly introduced stream API in loklak.

The motivation of such application was taken from emojitracker by mroth as mentioned in fossasia/labs.fossasia.org#136. The changes were proposed in fossasia/apps.loklak.org#315 by @singhpratyush (me).

The app can be accessed live at https://singhpratyush.github.io/world-mood-tracker/index.html.

Resources

Continue ReadingAdding Tweet Streaming Feature in World Mood Tracker loklak App