Handlebars.js used in Open Event Web App

I recently started working in the Open Event Webapp project. One of the initial issues that I took up was a trivial UI bug. It was about adding sponsor names beneath sponsor images for better representation. The issue can be found here. On reading up the code base and exploring the project a bit, I came across a new template – Handlebars.js. Handlebars is a template which has it’s base with the Mustache templating language. One of the early discoveries that I made with Handlebars.js was the use of {{ }} and {{{ }}} and the basic difference between them. In general, all Handlebar.js expressions, just like in Mustache templating, are written between {{ }} or {{{ }}} type of brackets. That is how I learned to identify and distinguish Handlebars from core HTML, even though they are inter-linked. The official Handlebars documentation describes Handlebars expressions in the following way:

A handlebars expression is a {{, some contents, followed by a }} ”

Getting started with Handlebars.js

Installation:

For a basic Linux installation, type the following in your command line:

npm install --save handlebars

Including Handlebars in HTML:

<script src="handlebars-v4.0.10.js"></script>

Handlebars templates are often stored in .hbs files for better readability and accessibility. The Open Event Webapp project consists of a handlebars .hbs file for each of the tracks, events, rooms, schedule, sessions and speakers templates. These can be found here, that is under src/backend/templates folder.

Difference between {{ }} and {{{ }}}: 

Handlebars enables developers to print raw HTML tags or code with the help of {{{ }}}. On the contrary, if you don’t want to print HTML (which is usually the case), use {{ }}. For better understanding, let’s take an example.

If our JS has an object that looks something like:

$(function () {
   var templateScript = $("#title-template").html();

   var temp = Handlebars.compile(templateScript);

var Title= {
“title”: <a> Handlebars</a>
}

Then, HTML of the following kind will help to distinguish the {{ }} and {{{ }}} brackets.

<script id=”title-template” type=”text/x-handlebars-template”>
{{title}}
{{{title}}}
</script>

//the first line will contain an anchor tag with the name “Handlebars”
//the second line will contain “<a>Handlebars</a>”

Block helpers in Handlebars:

Block helpers are identified by a ‘ #’ and they help to define and access custom iterators.

Handlebars allow calling JavaScript functions with the help of ‘helpers’. It doesn’t allow direct JavaScript code in the HTML with templates. We can create our own helpers using Handlebars.registerHelper () in our JavaScript. We generally pass a function to the helper. A good example was provided in the Handlebars.js documentation:

Handlebars.registerHelper('noop', function(options) {
  return options.fn(this);
});

By default, Handlebars helpers take the current context as the context to pass(“this”). Other fields are overshadowed. Incase, we want to access one of the fields that is masked by the default “this” context, we have to use a path reference.

Iterations using helpers:

Helpers can be a great way  to iterate over lists or objects. I will demonstrate it with an example from the Open Event Webapp project. To display all the sponsors of an event in the home page of the event Webapp, we use the following handlebars code, where we iterate over the object list “sponsorpics” that we have. It looks something like this:

{'1': ['Oreilly', 'Amazon'], '2': ['Huawei', 'Google'],'3': ['RedHat', 'GitHub']}
     
{{#if eventurls.sponsorsection}}
<div class="sponsor-container">
       <section class="sponsorscont">
         <div class="row sponsor-row">
           <div class="col-sm-12 col-md-12 col-xs-12 text-center">
             <h1 class="section-header">Proudly supported by</h1><br>
           </div>
         </div>
         <div class="row">
           <div class="col-sm-10 col-sm-offset-1">



             <div class="row">
               {{#each sponsorpics}}
                 {{#each this}}
                   <div class="{{{divclass}}}">
                     <div class=" {{{sponsorimg}}} text-center">
                       <a href="{{{url}}}" data-toggle="tooltip" title="{{{type}}}">
                         <img class="lazy centre {{{imgsize}}}" alt="{{{name}}}" data-original="{{{logo}}}">
                       </a>
                       {{{name}}}
                     </div>
                   </div>
                 {{/each}}
               {{/each}}
             </div> <!-- sponsor-row -->
           </div>
         </div>
       </section>
     </div>
   {{/if}}

For your reference, you can view a sample Webapp for the OSCON 2017 event here.
For further information, please refer to Handlebars.js .
An interesting tutorial about Handlebars in 10 mins or less can be found here.

Continue ReadingHandlebars.js used in Open Event Web App

Implementing Registration API in Open Event Front-end

In this post I will discuss how I implemented the registration feature in Open Event Front-end using the Open-Event-Orga API. The project uses Ember Data for consumption of the API in the ember application. The front end sends POST request to Open Event Orga Server which verifies and creates the user.

We use a custom serialize method for trimming the request payload of the user model by creating a custom user serializer. Lets see how we did it.

Implementing register API

The register API takes username & password in the payload for a POST request which are validated in the register-form component using the semantic-ui form validation. After validating the inputs from the user we bubble the save action to the controller form the component.

submit() {
  this.onValid(() => {
    this.set('errorMessage', null);
    this.set('isLoading', true);
    this.sendAction('submit');
  });
}

In controller we have `createUser()` action where we send a POST request to the server using the save() method, which returns a promise.

createUser() {
  var user = this.get('model');
  user.save()
    .then(() => {
      this.set('session.newUser', user.get('email'));
      this.set('isLoading', false);
      this.transitionToRoute('login');
    })
    .catch(reason => {
      this.set('isLoading', false);
      if (reason.hasOwnProperty('errors') && reason.errors[0].status === 409) {
        this.set('errorMessage', this.l10n.t('User already exists.'));
      } else {
        this.set('errorMessage', this.l10n.t('An unexpected error occurred.'));
      }
    });
}

The `user.save()` returns a promise, therefore we handle it using a then-catch clause. If the request is successful, it executes the `then` clause where we redirect to the login route. If the request fails we check if the status is 409 which translates to a duplicate entry i.e the user already exists in the server.

Serializing the user model using custom serializer

Ember lets us customise the payload using serializers for models. The serializers have serialize function where we can trim the payload of the model. In the user serializer we check if the request is for record creation using `options.includeId`. If the request is for record creation we trim the payload using the lodash `pick` method and pick only email & password for payload for POST request.

serialize(snapshot, options) {
  const json = this._super(...arguments);
  if (options && options.includeId) {
    json.data.attributes = pick(json.data.attributes, ['email', 'password']);
  }
  return json;
}

Thank you for reading the blog, you can check the source code for the example here.

Resources

Continue ReadingImplementing Registration API in Open Event Front-end

Adding Unit Test For Local JSON Parsing in Open Event Android App

The Open Event project uses JSON format for transferring event information like tracks, sessions, microlocations and other. The event exported in the zip format from the Open Event server also contains the data in JSON format. The Open Event Android application uses this JSON data. Before we use this data in the app, we have to parse the data to get Java objects that can be used for populating views. There is a chance that the model and the JSON format changes in future. It is necessary that the models are able to parse the JSON data and the change in the model or JSON format don’t break JSON parsing.  In this post I explain how to unit test local JSON parsing so that we can ensure that the models are able to parse the local JSON sample data successfully.

Firstly we need to access assets from the main source set into the unit test. There is no way to directly access assets from main source set. We need to first add assets in test/resources directory. If assets are present in test/resources directory then we can use it using ClassLoader in the unit test. But we can’t just copy assets from the main source set to resources directory. If there is any change in sample JSON then we need to maintain both resources and it may make the sample inconsistent. We need to make assets shared.

Add the following code in the app level build.gradle file.

android {
    ...
    sourceSets.test.resources.srcDirs += ["src/main/assets"]
}

It will add src/main/assets as a source directory for test/resources directory.So after building the project the test will have access to the assets.

Create readFile() method

Now create a method readFile(String name) which takes a filename as a parameter and returns data of the file as a string.

private String readFile(String name) throws IOException {
        String json = "";
        try {
            InputStream inputStream = this.getClass().getClassLoader().getResourceAsStream(name);
            int size = inputStream.available();
            byte[] buffer = new byte[size];
            inputStream.read(buffer);
            inputStream.close();
            json = new String(buffer, "UTF-8");
        } catch (IOException e) {
            e.printStackTrace();
        }
        return json;
}

Here the getResourceAsStream() function is used to open file as a InputStream. Then we are creating byte array object of size same as inputStream data. Using read function we are storing data of file into byte array. After this we are creating a String object using a byte array.

Create ObjectMapper object

Create and initialize an ObjectMapper object in the Test class.

private ObjectMapper objectMapper;

    @Before
    public void setUp() {
        objectMapper = OpenEventApp.getObjectMapper();
        objectMapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, true);
}

Here setting DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES to true is very important. It will fail the test for any unrecognized fields in the sample.

Create doModelDeserialization() method

In the Open Event Android App we are using Jackson for JSON serialization and deserialization. Converting JSON data to java is called deserialization or parsing.

Now create doModelDeserialization() method which takes three parameters,

  • Class<T> type: Model Class type of the data
  • String name: Name of the JSON data file
  • boolean isList: true if JSON string contains the list of object else false

This method returns true if parsing is successful and false if there is any error in parsing.

private <T> boolean doModelDeserialization(Class<T> type, String name, boolean isList) throws IOException {
        if (isList) {
            List<T> items = objectMapper.readValue(readFile(name), objectMapper.getTypeFactory().constructCollectionType(List.class, type));
            if (items == null)
                return false;
        } else {
            T item = objectMapper.readValue(readFile(name), type);
            if (item == null)
                return false;
        }
        return true;
}

Here ObjectMapper is doing the main work of parsing data and returns parsed object using readValue() method.

Add Test

Now all the setup is done we just need to assert value returned by doModelDeserialization() method by passing appropriate parameters.

@Test
public void testLocalJsonDeserialization() throws IOException {
        assertTrue(doModelDeserialization(Event.class, "event", false));
        assertTrue(doModelDeserialization(Microlocation.class, "microlocations", true));
        assertTrue(doModelDeserialization(Sponsor.class, "sponsors", true));
        assertTrue(doModelDeserialization(Track.class, "tracks", true));
        assertTrue(doModelDeserialization(SessionType.class, "session_types", true));
        assertTrue(doModelDeserialization(Session.class, "sessions", true));
        assertTrue(doModelDeserialization(Speaker.class, "speakers", true));
}

Here only event JSON file doesn’t have a list of the objects so passing false as isList parameter for others we are passing true because its data contains a list of objects.

Conclusion:

Running unit tests after every build helps you to quickly catch and fix software regressions introduced by code changes to your app

Continue ReadingAdding Unit Test For Local JSON Parsing in Open Event Android App

Presenters via Loaders in Open Event Organizer Android App

Open Event Organizer‘s App design follows Model View Presenter (MVP) architecture which facilitates heavy unit testing of the app. In this design pattern, each fragment/activity implements a view interface which uses a presenter interface to interact with a model interface. The presenter contains most of the data of the view. So it is very important to restore presenters after configuration changes like rotation. As on rotation, the complete activity is re-created hence all the fields are destroyed and as a result, everything is re-generated resulting in state loss on configuration change which is unexpected. Open Event Organizer App uses the loader to store/provide presenters to the activity/fragment. Loader survives configuration changes. The idea of using the loader to provide presenter is taken from Antonio Gutierrez’s blog on “Presenters surviving orientation changes with loaders“.

The first thing to do is make a PresenterLoader<T> class extending Loader<T> where T is your presenter’s base interface. The PresenterLoader class in the app looks like:

public class PresenterLoader<T extends IBasePresenter> extends Loader<T> {

   private T presenter;

   ...

   @Override
   protected void onStartLoading() {
       super.onStartLoading();
       deliverResult(presenter);
   }

   @Override
   protected void onReset() {
       super.onReset();
       presenter.detach();
       presenter = null;
   }

   public T getPresenter() {
       return presenter;
   }
}

 

The methods are pretty clear from the names itself. Once this is done, now you are ready to use this loader in for your fragment/activity. Creating a BaseFragment or BaseActivity will be clever as then you don’t have to add same logic everywhere. We will take a use case of an activity. A loader has a unique id by which it is saved in the app. Use unique id for each fragment/activity. Using the id, the loader is obtained in the app.

Loader<P> loader = getSupportLoaderManager().getLoader(getLoaderId());

 

When creating for the first time, the loader is set up with the loader callbacks where we actually set a presenter logic. In the Organizer App, we are using dagger dependency injection for injecting presenter in the app for the first time. If you are not using the dagger, you should create PresenterFactory class containing create method for the presenter. And pass the PresenterFactory object to the PresenterLoader in onCreateLoader. In this case, we are using dagger so it simplifies to this:

getSupportLoaderManager().initLoader(getLoaderId(), null, new LoaderManager.LoaderCallbacks<P>() {
   @Override
   public Loader<P> onCreateLoader(int id, Bundle args) {
       return new PresenterLoader<>(BaseActivity.this, getPresenterProvider().get());
   }

   @Override
   public void onLoadFinished(Loader<P> loader, P presenter) {
       BaseActivity.this.presenter = presenter;
   }

   @Override
   public void onLoaderReset(Loader<P> loader) {
       BaseActivity.this.presenter = null;
   }
});

 

getPresenterProvider method returns Lazy<Presenter> provider to ensure single presenter creation in the activity/fragment. The lifecycle to setup PresenterLoader in activity is onCreate and in the fragment is onActivityCreated. Use presenter field from next lifecycle that is start. If the presenter is used before the start, it creates null pointer exception. For example, if implementing with the BaseFragment, setup loader in onActivityCreated method.

@Override
   protected void onCreate(@Nullable Bundle savedInstanceState) {
       super.onCreate(savedInstanceState);
       Loader<P> loader = getSupportLoaderManager().getLoader(getLoaderId());
       if (loader == null) {
           initLoader();
       } else {
           presenter = ((PresenterLoader<P>) loader).getPresenter();
       }
   }

 

Make sure that your base interface implements some of the basic methods. For example, onDetach, onAttach etc. getLoaderId method must be implemented in each fragment/activity using loaders. The method returns unique id for each fragment/activity. In Organizer App, the method returns layout id of the fragment/activity as a unique id.

Using the loader approach to store/restore presenters helps in surviving their instances in configuration changes in the app. Hence improves the performance.

Links:
Antonio Gutierrez’s blog post about Presenter surviving orientation changes with Loaders in Android
Android Documentation for Loaders

Continue ReadingPresenters via Loaders in Open Event Organizer Android App

Implementing QR Code Detector in Open Event Organizer App

One of the main features of Open Event Organizer App is to scan a QR code from an attendee’s ticket to validate his/her entry to an event. The app uses Google’s Vision API library, com.google.android.gms.vision.barcode for QR code detection. In this blog, I talk about how to use this library to implement QR code detection with dynamic frame support in an Android App. The library uses a term barcode for all the supported formats including QR code. Hence in the blog, I use the term barcode for QR code format.

We use Google’s dagger for dependency injections in the app. So all the barcode related dependencies are injected in the activity using the dagger. Basically, there are these two classes – BarcodeDetector and CameraSource. The basic workflow is to create BarcodeDetector object which handles QR code detection. Add a SurfaceView in the layout which is used by the CameraSource to show preview to the user. Pass both of these to CameraSource. Enough talk, let’s look into the code while moving forward from here on. If you are not familiar with dagger dependency injection, I strictly suggest you have a look at some tutorial introducing dagger dependency injection.

So we have a barcode module class which takes care of creating  BarcodeDetector and CameraSource.

@Provides
BarcodeDetector providesBarCodeDetector(Context context) {
   BarcodeDetector barcodeDetector = new BarcodeDetector.Builder(context)
       .setBarcodeFormats(Barcode.QR_CODE)
       .build();
   return barcodeDetector;
}

@Provides
CameraSource providesCameraSource(Context context, BarcodeDetector barcodeDetector) {
   return new CameraSource
       .Builder(context, barcodeDetector)
       ...
       .build();
}

 

You can see in the code that BarcodeDetector is passed to the CameraSource builder. Now comes preview part. The user of the app should be able to see what is actually detected. Google has provided samples showing how to do that. It provides some classes that you can just add to your projects. The classes with the links are – BarcodeGraphic, CameraSourcePreview, GraphicOverlay and BarcodeGraphicTracker.

CameraSourcePreview is the custom view which is used in the QR detecting layout for preview. It handles all the SurfaceView related stuff with the additional BarcodeGraphic view which extends GraphicOveraly which is used to draw dynamic info based on the QR code detected. We use this class to draw a frame around the QR code detected. BarcodeGraphicTracker is used to receive newly detected items, add a graphical representation to an overlay, update the graphics as the item changes, and remove the graphics when the item goes away.

Override draw method of BarcodeGraphic according to your need of how you want to show results on the screen once barcode is detected. The method in the Organizer app looks like:

@Override
public void draw(Canvas canvas) {
   if (barcode == null) {
       return;
   }
   // Draws the bounding box around the barcode.
   RectF rect = new RectF(barcode.getBoundingBox());
   ...
   int width = (int) ((rect.right - rect.left)/3);
   int height = (int) ((rect.top - rect.bottom)/3);

   canvas.drawBitmap(Bitmap.createScaledBitmap(frameBottomLeft, width, height, false), rect.left, rect.top, null);
   ...
   canvas.drawRect(rect, rectPaint);
}

 

The class has a Barcode field which gets updated on barcode detection. In the above method, the field rect gets dimensions of the bounding box of the QR code detector. And accordingly, frames are drawn at the vertices of the rect . Include CameraSourcePreview inclosing GraphicOverlay in the activity’s layout.

<...CameraSourcePreview
   android:id="@+id/preview"
   android:layout_width="match_parent"
   android:layout_height="match_parent">

   <...GraphicOverlay />

</...CameraSourcePreview>

 

CameraSourcePreview and GraphicOverlay are saved in the activity from the layout. Pass CameraSource and GraphicOverlay to the CameraSourcePreview using the method start. Now the last part left is setting the processor to the BarcodeDetector to add a connection to the GraphicOverlay. Use BarcodeGraphicTracker which connects GraphicOverlay to BarcodeDetector. This is done by passing BarcodeTrackerFactory which has create method for BarcodeGraphicTracker to Multiprocessor. The code looks like:

barcodeDetector.setProcessor(
   new MultiProcessor.Builder<>(
       new BarcodeTrackerFactory(graphicOverlay)).build());

 

Now BarcodeDetector is connected to the layout. This will update the preview on the layout as overridden in the draw method of BarcodeGraphic on each barcode detection.

Links:
Google’s Vision API – link
Google Dagger github repo link – https://github.com/google/dagger

Continue ReadingImplementing QR Code Detector in Open Event Organizer App

Implementing Tickets API on Open Event Frontend to Display Tickets

This blog article will illustrate how the tickets are displayed on the public event page in Open Event Frontend, using the tickets API. It will also illustrate the use of the add on, ember-data-has-query, and what role it will play in fetching data from various APIs. Our discussion primarily will involve the public/index route. The primary end point of Open Event API with which we are concerned with for fetching tickets for an event is

GET /v1/events/{event_identifier}/tickets

Since there are multiple  routes under public  including public/index, and they share some common event data, it is efficient to make the call for Event on the public route, rather than repeating it for each sub route, so the model for public route is:

model(params) {
return this.store.findRecord('event', params.event_id, { include: 'social-links' });
}

This modal takes care of fetching all the event data, but as we can see, the tickets are not included in the include parameter. The primary reason for this is the fact that the tickets data is not required on each of the public routes, rather it is required for the index route only. However the tickets have a has-many relationship to events, and it is not possible to make a call for them without calling in the entire event data again. This is where a really useful addon, ember-data-has-many-query comes in.

To quote the official documentation,

Ember Data‘s DS.Store supports querying top-level records using the query function.However, DS.hasMany and DS.belongsTo cannot be queried in the same way.This addon provides a way to query has-many and belongs-to relationships

So we can now proceed with the model for public/index route.

model() {
const eventDetails = this._super(...arguments);
return RSVP.hash({
  event   : eventDetails,
  tickets : eventDetails.query('tickets', {
    filter: [
      {
        and: [
          {
            name : 'sales-starts-at',
            op   : 'le',
            val  : moment().toISOString()
          },
          {
            name : 'sales-ends-at',
            op   : 'ge',
            val  : moment().toISOString()
          }
        ]
      }
    ]
  }),

We make use of this._super(…arguments) to use the event data fetched in the model of public route, eliminating the need for a separate API call for the same. Next, the ember-has-many-query add on allows us to query the tickets of the event, and we apply the filters restricting the tickets to only those, whose sale is live.
After the tickets are fetched they are passed onto the ticket list component to display them. We also need to take care of the cases, where there might be no tickets in case the event organiser is using an external ticket URL for ticketing, which can be easily handled via the is-ticketing-enabled property of events. And in case they are not enabled we don’t render the ticket-list component rather a button linked to the external ticket URL is rendered.  In case where ticketing is enabled the various properties which need to be computed such as the total price of tickets based on user input are handled by the ticket-list component itself.

{{#if model.event.isTicketingEnabled}}
  {{public/ticket-list tickets=model.tickets}}
{{else}}
<div class="ui grid">
  <div class="ui row">
      <a href="{{ticketUrl}}" class="ui right labeled blue icon button">
        <i class="ticket icon"></i>
        {{t 'Order tickets'}}
      </a>
  </div>
  <div class="ui row muted text">
      {{t 'You will be taken to '}} {{ticketUrl}} {{t ' to complete the purchase of tickets'}}
  </div>
</div>
{{/if}}

This is the most efficient way to fetch tickets, and also ensures that only the relevant data is passed to the concerned ticket-list component, without making any extra API calls, and it is made possible by the ember-data-has-many-query add on, with very minor changes required in the adapter and the event model. All that is required to do is make the adapter and the event model extend the RestAdapterMixin and ModelMixin provided by the add on, respectively.

Resources

Continue ReadingImplementing Tickets API on Open Event Frontend to Display Tickets

Create an AutocompleteTextView dropdown for the email input in the Open Event Orga Android App

In the first version of the Open Event Organizer App, the event organizer was required to enter his full email each time he logged out of his account and therefore it was hindering the user experience. AutoCompleteTextView with shared preferences is a solution to this problem. This feature provides an editable text view that shows completion suggestions automatically while the user is typing. The list of suggestions is displayed in a drop down menu. The user can choose an item to replace the content of the edit box with. It is extremely useful in enhancing user experience.

The solution we implemented was to create an autocomplete textview for the email input, store the email address of the user on a successful login in the shared preference in a set of strings to prevent duplicacy and display it in the dropdown on subsequent login attempts.

Implementation

Change your TextInputLayout structure to accommodate the autocompletetextview. Remember to create a separate autocompletetextview object with the specific id of the view.

<android.support.v7.widget.AppCompatAutoCompleteTextView
       android:id="@+id/email_dropdown"
       android:layout_width="match_parent"
       android:layout_height="wrap_content"
       android:hint="@string/email"
       android:inputType="textEmailAddress" />

 

Create Utility methods to get/store the emails in the shared preferences. The set data structure has been used here so that there is no duplicacy while storing the emails in the shared preferences.

public Set<String> getStringSet(String key, Set<String> defaultValue) {
   return sharedPreferences.getStringSet(key, defaultValue);
}

public void saveStringSet(String key, Set<String> value) {
   SharedPreferences.Editor editor = sharedPreferences.edit();
   editor.putStringSet(key, value);
   editor.apply();
}

public void addStringSetElement(String key, String value) {
   Set<String> set = getStringSet(key, new HashSet<>());
   set.add(value);
   saveStringSet(key, set);
}

 

Create helper methods to add an email and retrieve the list of emails from the shared preferences to provide it to the views.

private void saveEmail(String email) {
   utilModel.addStringSetElement(Constants.SHARED_PREFS_SAVED_EMAIL, email);
}

private Set<String> getEmailList() {
   return utilModel.getStringSet(Constants.SHARED_PREFS_SAVED_EMAIL, null);
}

 

Create an autocompleteTextView object in your activity with the help of the R id from the layout and set the adapter with the set of strings retrieved from the shared preferences. You could create a custom adapter for this case too, but as far as the Open Event Orga App was concerned, using the array adapter made sense.

autoCompleteEmail.setAdapter(new ArrayAdapter<>(this, android.R.layout.simple_list_item_1,
   new ArrayList<String>(emails)));

 

Conclusion

It is important that the user is served with the best possible experience of the application and the autocomplete text view for the email serves just that.

Resources

Continue ReadingCreate an AutocompleteTextView dropdown for the email input in the Open Event Orga Android App

Rendering Open Event Server’s API-Blueprint document

After writing the FOSSASIA‘s Open Event Server project API- Blueprint Document manually, we wanted to know how we could render the document, how to check it in an HTML-client friendly format and how to make it change the look as we go. In order to do that, we found two rendering ways.

They are:

1) The apiary editor:

This editor helps us to render API blueprints and print them in user readable API documented format. When we create the API blueprint manually, we always follow the pattern write an api blueprint i.e the name and metadata, then followed by resource groups and actions, which was already discussed in the last blog. In order to use the apiary editor, we start off by creating our first project. Initially during the our first use of this editor, we will get a default “polls and vote” example api project. This is a template we can use as guide. The pole/vote api looks something like this in the editor mode:

 

Apiary has a facility to test an API, document an API, inspect an API or simply edit an API. We first start off by creating a project “open-event-api”. Next, in the editor mode of the apiary, we add the contents of our api-blueprint documents.
Here is an example of how USERS API is rendered. If we get our request and response correctly, on clicking List All Users we will get a good 200 response like this in the editor:

However, if we tend to go off format with the api-blueprint, we get an invalid error:

The final rendering and how the API result can be seen in the document mode with the respective API’s request and response.
The document mode request and response look like this:

This rendered doc can be viewed publicly with the link got in the document mode. Similarly, we test it out in the editor for the rest of the ap. This is a simple way to render your api blueprint.

2)  The aglio renderer:

Since API blueprint is presented in the form of .apib format, the con side of it is it is not easily viewable by viewers. Even though we use apiary, view the rendered docs along with getting a shareable link, we would surely like the docs for our API server to be hosted in our server as well. So, we use Aglio exactly to do that .

It is an API Blueprint renderer which supports multiple themes. It converts the apib file into user readable formats such as pdf, html, etc. Here since we want to host it as a webpage, we render it in the form of .html.  It outputs static HTML of the result and can be served by any web host. Since API Blueprint is a Markdown-based document format, this lets us write API descriptions and documentation in a simple and straightforward way.
An example of how aglio rendered document in a three column format looks like:

The best thing about Aglio is not only does it support a lot many theme and templates, but it also allows you to provide your own custom theme and template to render the html file from the api blueprint.

How to use aglio renderer:

  • We first follow up with installation:
npm install -g aglio
  • After installation, we go to the folder the .apib file is stored and generate the HTML. There are 5 built in themes available with two column and three column layout. They are:
# Default theme
aglio -i input.apib -o output.html

-> This command takes as input the input.apib file as API Blueprint and creates a rendered output file named output.html.

 

# Use three-column layout
aglio -i input.apib --theme-template triple -o output.html

-> This command takes as input the input.apib file as API Blueprint and creates a rendered output file named output.html. However it uses the theme-template flag. The theme-template flag is used to define whether the layout of the rendered html is two column or three column. In this command, it is set as triple which means three column.

# Built-in color scheme
aglio --theme-variables slate -i input.apib -o output.html

-> Aglio has different color schemes that you can use while rendering the docs html file. Some of them are Olio, Streak, Slate, etc.

# Customize a built-in style
aglio --theme-style default --theme-style ./my-style.less -i input.apib -o output.html

-> Suppose you want to provide a syntactical style sheet such as SASS, LESS, etc. so as to define your own styling. You can do that as given in the above example. The my-style.less is a user defined syntactical stylesheet. This is then used to provide styling for the output file rendered.

# Custom layout template
aglio --theme-template /path/to/template.jade -i input.apib -o output.html

-> You can write your own custom layout template in a template.jade file and use that for generating the output.html instead of two or three column layout.

We run the build-in color scheme: aglio –theme-variables slate -i api_blueprint.apib -o output.html to generate our Open Event Server api document which we have something like this:

You can visit the live version of FOSSASIA‘s Open Event Server API Document right here: https://api.eventyay.com/

Continue ReadingRendering Open Event Server’s API-Blueprint document

Open Event Server Ticket PDF: Where and Where-not to use static frame in xhtml2pdf

One among the very important features of Open Event Server project is the tickets sales feature, where a user can buy a number of different tickets for a number of people after which he is given a link to download the ticket pdf. However, an issue concerning our Open Event Server project was that if a buyer bought different tickets at a time with different individual ticket holders, all tickets contained the same name, type and QR-Code, which in no way was acceptable since tickets and holders were different.

We use the xhtml2pdf facility in order to convert an html to pdf. An xhtml2pdf facility helps us in converting HTML contents into PDF without the use of browser ‘print’ facility. In order to do this, we use the help of pages and frames, pages being the page of the PDF document, while a frame being that part of area within the page where the contents get stored.

What is a PDF and HTML?

The basic understanding of a PDF and an HTML is that, a PDF or Portable Document Format has layout such that it is measured in terms of specific width and height. However, for an HTML or Hyper Text Markup Language, we do no not have those specific widths and heights. Rather an HTML’s width depends on a person’s device of view and height can be infinitely long as desired.

In terms of xhtml2pdf relation with pages and frames layout, we can identify with this diagram:

+-page———————+
|                                    |
|  +-content_frame-+  |
|  |                          |    |
|  |                          |    |
|  |                          |    |
|  |                          |    |
|  +———————+   |
|                                    |
+—————————-+


The stated issue was due to static frame in xhtml2pdf.

What is that you ask?

Static frames vs Content frames
xhtml2pdf uses the concept of Static Frames to define content that remains the same across different pages (like headers and footers), and uses Content Frames to position the to-be-converted HTML content.

Static Frames are defined through use of the @frame property -pdf-frame-content. Regular HTML content will not flow through Static Frames.

Content Frames are @frame objects without this property defined. Regular HTML content will flow through Content Frames.(xhtml2pdf documentation)

So, the basic idea of the use of  -pdf-frame-content  was to make the contents of the pdf static i.e. without having to continuously change alignments of the page. It made the whole pdf stay static.

This actually caused the whole pdf content to stay constant, event while the loop was going over different name, QR-code and ticket-name values. That means the first loop content stayed over even with changes in values.

Just a simple fix of not making the frame static was the solution.

Here is a few insight of what we had before that was causing the issue:

 <style>
        @page {
            size: a4 portrait;
            background-image: url('{{ base_dir }}/static/data/ticket-trans-
                                  notext.png');
            margin: 0;

            @frame col1_frame {             /* Content frame 1 */
                left: 80pt;  top: 30pt;
                height: 250pt; width: 300pt;
                -pdf-frame-content: main_content;
            }

            @frame qrcode {
                left: 455pt;  top: 50pt;
                width: 100pt; height: 120pt;
                -pdf-frame-content: qr_code;
            }
            @frame number_frame {
                 left: 455pt;  top: 25pt;
                width: 100pt; height: 30pt;
                -pdf-frame-content: number_content;
            }


             @frame col2_frame {
                left: 440pt; top: 170pt;
                -pdf-frame-content: personal_content;
            }
        }


Here,
main_content, qrcode, personal_content and number_content? are simply the class you want to make static.
The following was done to fix it:

 <style>
        @page {
            size: a4 portrait;
            background-image: url('{{ base_dir }}/static/data/ticket-trans-
                                  notext.png');
            margin: 0;

            @frame col1_frame {             /* Content frame 1 */
                left: 80pt;  top: 30pt;
                height: 250pt; width: 300pt;
            }

            @frame qrcode {
                left: 455pt;  top: 50pt;
                width: 100pt; height: 120pt;
            }
            @frame number_frame {
                 left: 455pt;  top: 25pt;
                width: 100pt; height: 30pt;
                -pdf-frame-content: number_content;
            }


             @frame col2_frame {
                left: 440pt; top: 170pt;
            }
        }



But the main question was, ‘where and where-not to use static frame’.
So the simple answer to that is, when you want the contents to stay exactly the same over the different pages of the pdf (for example the company logo or the administrator signature, etc), then you can happily get on with -pdf-frame-content. i.e:

          -pdf-frame-content: <class_name>


If not, or you need to loop over different values, then use Content frames.

Also, for more detailed understanding of PDF and HTML pages and frames, we have this good documentation written about it here: https://github.com/xhtml2pdf/xhtml2pdf/blob/master/doc/source/format_html.rst#static-frames-vs-content-frames

Continue ReadingOpen Event Server Ticket PDF: Where and Where-not to use static frame in xhtml2pdf

Addition of Bookmarks to the Homescreen in the Open Event Android App

In the Open Event Android app we had already built the new homescreen but the users only had access to bookmarks in a separate page which could be accessed from the navbar.If the bookmarks section were to be incorporated in the homescreen itself, it would definitely improve its access to the user. In this blog post, I’ll be talking about how this was done in the app.

These 2 images show the homescreen and the bookmarks section respectively.

No Bookmark View
Bookmark View

 

 

 

 

 

 

 

 

 

This was the proposed homescreen page for the app. This would provide easy access to important stuff to the user such as event venue,date,description etc. Also the same homescreen would also have the bookmarks showing at the top if there are any.

The list of bookmarks in the first iteration of design was modeled to be a horizontal list of cards.

Bookmarks Merging Process

These are some variables for reference.

private SessionsListAdapter sessionsListAdapter;
 private RealmResults<Session> bookmarksResult;
 private List<Session> mSessions = new ArrayList<>();

The code snippet below highlights the initial setup of the bookmarks recycler view for the horizontal List of cards. All of this is being done in the onCreateView callback of the AboutFragment.java file which is the fragment file for the homescreen.

bookmarksRecyclerView.setVisibility(View.VISIBLE);
 sessionsListAdapter = new SessionsListAdapter(getContext(), mSessions, bookmarkedSessionList);
 sessionsListAdapter.setBookmarkView(true);
 bookmarksRecyclerView.setAdapter(sessionsListAdapter);
 bookmarksRecyclerView.setLayoutManager(new LinearLayoutManager(getContext(),LinearLayoutManager.HORIZONTAL,false));

The SessionListAdapter is an adapter that was built to handle multiple types of displays of the same viewholder i.e SessionViewHolder . This SessionListAdapter is given a static variable as an argument which is just notifies the adapter to switch to the bookmarks mode for the adapter.

private void loadData() {
    bookmarksResult = realmRepo.getBookMarkedSessions();
    bookmarksResult.removeAllChangeListeners();
    bookmarksResult.addChangeListener((bookmarked, orderedCollectionChangeSet) -> {
        mSessions.clear();
        mSessions.addAll(bookmarked);
 
        sessionsListAdapter.notifyDataSetChanged();
 
        handleVisibility();
    });
 }

This function loadData() is responsible for extracting the sessions that are bookmarked from the local Realm database. We the update the BookmarkAdapter on the homescreen with the list of the bookmarks obtained. Here we see that a ChangeListener is being attached to our RealmResults. This is being done so that we do our adapter notify only after the data of the bookmarked sessions has been processed from a background thread.

if(bookmarksResult != null)
    bookmarksResult.removeAllChangeListeners();

And it is good practice to remove any ChangeListeners that we attach during the fragment life cycle in the onStop() method to avoid memory leaks.

So now we have successfully added bookmarks to the homescreen.

Resources

Continue ReadingAddition of Bookmarks to the Homescreen in the Open Event Android App