Creating sponsors layout in Open Event Front-end

In this blog I discuss how we implemented sponsors layout in Open Event Front-end. The sponsors are fetched from Orga Server API and is handled using Ember JS in the Front-end.

The fetched sponsor is an array of JSON objects which need to be grouped based on the type of the sponsor which is done using the lodash library. How do we implement it?

Creating sponsor-list & sponsor-item components

We create two components sponsor-list which contains all the sponsors & sponsor-item which is used to render each sponsor.

ember g component sponsor-list

ember g component sponsor-item

Grouping the sponsors by type

The API response return an array of the sponsors of the event as :

 sponsors: [
   { name: 'Sponsor 2', 
     Url: '#', 
     logoUrl: 'http://placehold.it/150x60', 
     level: 2, 
     type: 'Gold Sponsor', 
     description: '' 
   }, 
   { name: 'Sponsor 1', 
     url: '#', 
     logoUrl: 'http://placehold.it/150x60', 
     level: 1, 
     type: 'Silver Sponsor', 
     description: '' 
   }
 ]

This response is the list of all sponsors, which is not grouped by the type of the sponsor. We sort and group the array and return a JSON object in the sponsor-list component.

import Ember from 'ember';
import { orderBy, groupBy } from 'lodash';

const { Component, computed } = Ember;

export default Component.extend({

 sponsorsGrouped: computed('sponsors.[]', function() {
   return groupBy(orderBy(this.get('sponsors'), 'level'), 'type');
 })
});

We use lodash orderBy to sort the sponsors by the level and groupBy to convert the array into an JSON object of the grouped sponsors. We compute the grouped object using ember computed property.

Rendering sponsors in public event route

The sponsor array is passed to the sponsors-list component where the sponsors are sorted and grouped. We pass each sponsor from the sponsorsGrouped to the sponsor-item component which renders the logo of the sponsor.

sponsor-list.hbs

<h3 class="ui header">{{t 'Sponsors'}}</h3>
{{#each-in sponsorsGrouped as |key sponsors|}}
 <h4 class="ui header">{{key}}</h4>
 <div class="ui three column stackable grid">
   {{#each sponsors as |sponsor|}}
     {{public/sponsor-item sponsor=sponsor}}
   {{/each}}
 </div>
{{/each-in}}

sponsor-item.hbs

<a href="{{sponsor.url}}">
 <img src="{{sponsor.logoUrl}}" class="ui image  sponsor-image" alt="{{sponsor.name}}">
</a>

The outcome of this change on the Open Event Front-end now looks like this:

Thank you for reading the blog, you can check the source code for the example here.

Resources:

 

Continue ReadingCreating sponsors layout in Open Event Front-end

Implementing PNG Export of Schedule in Open Event Webapp

Fortunately for us, we don’t have to implement it from scratch (which would have been extremely difficult and time-consuming). Enter html2canvas library. It renders an element onto the canvas after which we can convert it into an image. I will now explain how we implemented png export in the calendar mode. You can view the whole schedule template file here

Here is a screenshot of calendar or grid view of the schedule. Currently selected date is 18th Mar, Saturday. The PNG Export button is on the top-right corner beside the ‘Calendar View’ button.

32fa6d15-59da-4521-b348-6c01f6af7825.png

Here is a little excerpt of the basic structure of the calendar mode of the sessions. I have given an overview of it in the comments.

<div class="{{slug}} calendar">
 <!-- slug represents the currently selected date -->
 <!-- This div contains all the sessions scheduled on the selected date -->
 <div class="col-md-12 paddingzero">
   <!-- Contain content related to current date and time -->
 </div>
 <div class="calendar-content">
   <div class="times">
     <!-- This div contains the list of all the session times on the current day -->
     <!-- It is the left most column of the grid view which contains all the times →
     <div class="time">
       <!-- This div contains information about the particular time -->
     </div>
   </div>
   <div class="rooms">
     <!-- This div contains all the rooms of an event -->
     <!-- Each particular room has a set of sessions associated with it on that particular date -->
     <div class="room">
       <!-- This div contains the list of session happening in a particular room -->
       <!-- Session Details -->
     </div>
   </div>
 </div>
</div>

Now, let us see how we will actually capture an image of the HTML element shown above. Here is the code related to it:

$(".export-png").click(function() {
 if (isCalendarView === true) {

   $('.calendar').each(function() {
     if ($(this).attr('class').split(' ').indexOf('hide') <= 0) {

       $timeline = $(this);
       initialWidth = $timeline.width();
       numberOfChildElements = $timeline.find('.rooms')[0].childElementCount;
       numberOfChildElements = numberOfChildElements - 1;
       widthOfChild = $timeline.find('.room').width();
       canvasWidth = numberOfChildElements * widthOfChild + 50;
       $timeline.width(canvasWidth);
     }
   });
 }

 html2canvas($timeline, {
   onrendered: function(canvas) {
     canvas.id = "generated-canvas";
     canvas.toBlob(function(blob) {
       saveAs(blob, '' + $timeline.attr('class') + '.png');
     });
   },
 });
 $timeline.width(initialWidth);
});

Note that this initial width calculated is the width which is visible to us on the screen. In reality, the element might be scrollable and its actual width might be different. If we render the element using the initial width, we would not be able to see the full contents of that element. It will not show the whole view. Hence we need to calculate the actual width.Let us see what is going on in this code. When the user clicks on the export PNG button, we check whether we are in the calendar mode or not. If yes, then we proceed further. We then see which date is currently selected and accordingly select that div. After selecting it, we then get the initial width of that element.

So, we check all the child elements inside it, get their count and width and then calculate the actual width of the parent element based on it. Temporarily, we set this actual width as the width of the session element and pass it to the html2canvas function. That in turn, renders the whole element onto a canvas. After it has been successfully rendered onto the canvas, we save it to as an image and present a download box to the user for downloading that image.

Here is the download pop-up box

bfbd12c2-f6ed-4dae-8485-bfd1638faf74.png

And this is the downloaded PNG Image. Click on it for a higher resolution!

Screenshot from 2017-07-03 00-31-56.png

Resources

Continue ReadingImplementing PNG Export of Schedule in Open Event Webapp

Open Event Server: Working with Migration Files

FOSSASIA‘s Open Event Server uses alembic migration files to handle all database operations and updations.  From creating tables to updating tables and database, all works with help of the migration files.
However, many a times we tend to miss out that automatically generated migration files mainly drops and adds columns rather than just changing them. One example of this would be:

def upgrade():
    ### commands auto generated by Alembic - please adjust! ###
    op.add_column('session', sa.Column('submission_date', sa.DateTime(), nullable=True))
    op.drop_column('session', 'date_of_submission')

Here, the idea was to change the has_session_speakers(string) to is_session_speakers_enabled (boolean), which resulted in the whole dropping of the column and creation of a new boolean column. We realize that, on doing so we have the whole data under  has_session_speakers lost.

How to solve that? Here are two ways we can follow up:

  • op.alter_column:
    ———————————-

When update is as simple as changing the column names, then we can use this. As discussed above, usually if we migrate directly after changing a column in our model, then the automatic migration created would drop the old column and create a new column with the changes. But on doing this in the production will cause huge loss of data which we don’t want. Suppose we want to just change the name of the column of start_time to starts_at. We don’t want the entire column to be dropped. So an alternative to this is using op.alter_column. The two main necessary parameters of the op.alter_column is the table name and the column which you are willing to alter. The other parameters include the new changes. Some of the commonly used parameters are:

  1. nullable Optional: specify True or False to alter the column’s nullability.
  2. new_column_name – Optional; specify a string name here to indicate the new name within a column rename operation.
  3. type_Optional: a TypeEngine type object to specify a change to the column’s type. For SQLAlchemy types that also indicate a constraint (i.e. Boolean, Enum), the constraint is also generated.
  4. autoincrement –  Optional: set the AUTO_INCREMENT flag of the column; currently understood by the MySQL dialect.
  5. existing_typeOptional: a TypeEngine type object to specify the previous type. This is required for all column alter operations that don’t otherwise specify a new type, as well as for when nullability is being changed on a column.

    So, for example, if you want to change a column name from “start_time” to “starts_at” in events table you would write:
    op.alter_column(‘events’, ‘start_time’, new_column_name=’starts_at’)
def upgrade():
    ### commands auto generated by Alembic - please adjust! ###
    op.alter_column('sessions_version', 'end_time', new_column_name='ends_at')
    op.alter_column('sessions_version', 'start_time', new_column_name='starts_at')
    op.alter_column('events_version', 'end_time', new_column_name='ends_at')
    op.alter_column('events_version', 'start_time', new_column_name='starts_at')


Here,
session_version and events_version are the tables name altering columns start_time to starts_at and end_time to ends_at with the op_alter_column parameter new_column_name.

  • op.execute:
    ——————–

Now with alter_column, most of the alteration in the column name or constraints or types is achievable. But there can be a separate scenario for changing the column properties. Suppose I change a table with column “aspect_ratio” which was a string column and had values “on” and “off” and want to convert the type to Boolean True/False. Just changing the column type using alte_column() function won’t work since we need to also modify the whole data. So, sometimes we need to execute raw SQL commands. To do that, we can use the op.execute() function.
The way it is done:

def upgrade():
    ### commands auto generated by Alembic - please adjust! ###
    op.execute("ALTER TABLE image_sizes ALTER full_aspect TYPE boolean USING CASE 
            full_aspect WHEN 'on' THEN TRUE ELSE FALSE END", execution_options=None)

    op.execute("ALTER TABLE image_sizes ALTER icon_aspect TYPE boolean USING CASE 
            icon_aspect WHEN 'on' THEN TRUE ELSE FALSE END", execution_options=None)

    op.execute("ALTER TABLE image_sizes ALTER thumbnail_aspect TYPE boolean USING CASE 
            thumbnail_aspect WHEN 'on' THEN TRUE ELSE FALSE END"execution_options=None)

For a little more advanced use of op.execute() command will be:

op.alter_column('events', 'type', new_column_name='event_type_id')
    op.alter_column('events_version', 'type', new_column_name='event_type_id')
    op.execute('INSERT INTO event_types(name, slug) SELECT DISTINCT event_type_id, 
                lower(replace(regexp_replace(event_type_id, \'& |,\', \'\', \'g\'),
                \' \', \'-\')) FROM events where not exists (SELECT 1 FROM event_types 
                where event_types.name=events.event_type_id) and event_type_id is not
                null;')
    op.execute('UPDATE events SET event_type_id = (SELECT id FROM event_types WHERE 
                event_types.name=events.event_type_id)')
    op.execute('ALTER TABLE events ALTER COLUMN event_type_id TYPE integer USING 
                event_type_id::integer')

In this example:

  • op.alter_column() renames the column type to event_type_id of events table
  • op.execute() does the following:
  • Inserts into column name of event_types table the value of event_type_idN (which previously contained the name of the event_type) from events table, and
  • Inserts into slug column of event_types table the value of event_type_id where all letters are changed to lowercase; “& ” and “,” to “”; and spaces to “-”.
    1. Checks whether a type with that name already exists so as to disallow any duplicate entries in the event_types table.
    2. Checks whether the event_type_id is null because name of event_types table cannot be null.

You can learn more on Alembic migrations here: http://alembic.zzzcomputing.com/en/latest/ops.html

Continue ReadingOpen Event Server: Working with Migration Files

Uploading Images via APIs in the Open Event Server

APIs help us to send and receive data in some particular data format that can then be used individually or integrated with a frontend UI. In our case, the entire API server is used to manage all the requests from the frontend and send back the necessary response. Usually, the application is to send simple form data which is then stored into the backend database and a valid jsonapi response is shown. However other than normal text, url, datetime data one very important data is media files, in our case event images, user images, slides, etc. In this blog, we will particularly deal with how we can upload images in the server using API.

Sending Data

Firstly, we need to decide how do we send the data in the post request of the API. So we are sending a base64 encoded string representing the image along with the image extension appended to it, for example, . This is a widely used format for showing images over the web. So when we send a POST request we send a json encoded body like:

{
    "data": ""
}

Converting Base64 Data to Image

There are 2 parts of the data in the string that we receive. The first part basically tells us the format of the image(.gif in this case) and string encoding(base64 in this case), the second part gives us the encoded string. So, from the first part, we extract the file extension for the image file to be created. We use uuid.uuid4() for a random filename.

filename = '{}.{}'.format(str(uuid.uuid4()).data.split(";")[0].split("/")[1])

Now to write the base64 encoded string as an image file, we first need to get only the encoded string part from the data and then decode it. We use string decode function of python for the decoding purpose. Then we write the data to the image file and save it.

file.write(data.split(",")[1].decode("base64")

API Response

Finally using whatever logic you are using for serving your static files, you generate the static file path for the image saved. And then create another json encoded response which returns you the url for the saved image in the server.

{
    "url": "https://xyz.storage.com/asd/fgh/hjk/1233456.png"
}

And there you have your image uploaded and served.

Continue ReadingUploading Images via APIs in the Open Event Server

Open Event Server: Dealing with environment variables

FOSSASIA‘s Open Event Server uses some environment variables to maintain different configuration for different deployment. However one con of it was, for local development, developers have to run many export commands.

It all started with the “It is not convenient, we humans are lazy.” phrase. A recent suggestion was to read this environment variables with files rather than running commands every time.
This few example environment variable commands were:

export DATABASE_URL=postgresql://open_event_user:test@127.0.0.1:5432/test

and

export INTEGRATE_SOCKETIO=false

 

Open Event Server now uses .env file and envparse to handle this.

The changes were:

  1. We store the variables in .env file, let it get ignored by git, and
  2. Use envparse to parse the file.

What is envpase:
       envparse is a simple utility to parse environment variables. It aims to eliminate duplicated, often inconsistent parsing code and instead provide a single, easy-to-use wrapper.

So instead of reading the string from the command line everytime:

export DATABASE_URL=postgresql://open_event_user:password@127.0.0.1:5432/open_event_db

We read it from the file:

To read from command line we had:

SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL', None)

Which now was parsed using envparse as:

SQLALCHEMY_DATABASE_URI =  env('DATABASE_URL', default=None)

In the above example, DATABASE_URL is a string and we store this string in SQLALCHEMY, setting the default by the default parameter(None in this case).

The type of environment variable is originally string, we can simply use env to parse these strings. For simplicity and understanding we can also use env.str. For different types, we can simply type cast them like env.bool (for boolean), env.int (for integer) etc. One good advantage of this envparse feature is the direct use of these type cast rather than checking for strings (i.e. reading the string from command line).

For example, earlier we had something like this:

socketio_integration = os.environ.get('INTEGRATE_SOCKETIO’)
if socketio_integration == true’:
INTEGRATE_SOCKETIO =True

Using envparse, we can have something like this:

INTEGRATE_SOCKETIO = env.bool('INTEGRATE_SOCKETIO’, default=False)

This helps in parsing as boolean instead of string. So, if we have INTEGRATE_SOCKETIO=true in .env file, we can write INTEGRATE_SOCKETIO = env.bool(‘INTEGRATE_SOCKETIO’, default=False). This automatically converts the true to boolean True in python.

In order to use envparse we install envparse with:

$ pip install envparse


In the case of
Open Event Server project, you only have to install the requirements.txt and copy the .env.example already mentioned in installation doc.

This is how we finally remove the headache of writing big exports again and again and fairly helps beginners to start off with Open Event Server  project much more easily and quickly.

Continue ReadingOpen Event Server: Dealing with environment variables

Permission Dependent Schema for Admin Settings in Open Event Server

For implementing the next version of the API in Open Event, the schema is a very important thing. It tells you exactly what all information you need to send in the body and how the response will look. In flask-rest-jsonapi, we usually mention a schema for an API which is then used for validating requests and sending response. Using decorators, we restrict who all can create, edit or get responses from a particular API endpoint. However, a scenario may so arise that you need to show data to users at different permissions level, but the amount of data shown significantly varies with the permission.

For example, for the settings API in our case. There are few informations like the app name, app tagline that we want to be available to users at all permission levels. However, informations such as aws secret key, or mailing secret keys or any other secret key, we want that to be available only to the admin and super admin. And the responses should be such that users at different permission level should feel that whatever information shown to them is complete and not missing.

So, what we do is we create different schemas, in our case 2 different schemas. Depending on the permission of the user, we show them a particular schema. In our case, the two schemas are SettingSchemaAdmin and SettingSchemaNonAdmin. In SettingSchemaAdmin, we have all the attributes or fields that are present and is accessible to the Admin and Super Admin. In the SettingSchemaNonAdmin however, we have only those fields and attributes that we want to show to all non admin users.

from flask_jwt import current_identity
 
class SettingDetail(ResourceDetail):
    """
    setting detail by id
    """
 
    def before_get(self, args, kwargs):
        kwargs['id'] = 1
        if current_identity.is_admin or current_identity.is_super_admin:
            self.schema = SettingSchemaAdmin
        else:
            self.schema = SettingSchemaNonAdmin

 

The above code helps us achieve this. If you have read previous blogs about the API server, you would already know that we are using JWT for authenticating our users. In this code, we are importing current_identity from flask_jwt. Current_identity, returns us an object of the User type which has properties such as is_admin, is_super_admin, etc. to help us identify the permission level of that user.
Using this object, we check whether the user who is making the request via jwt authentication is an admin or super admin, or just a normal registered user.

        if current_identity.is_admin or current_identity.is_super_admin:
            self.schema = SettingSchemaAdmin
        else:
            self.schema = SettingSchemaNonAdmin

 

So, if the current user sending the request is an admin, then we set the schema for the Resource manager class of the flask-rest-jsonapi as SettingSchemaAdmin, which we have already declared before containing all the fields, else, we set it as SettingSchemaNonAdmin which has limited number of attributes.

Continue ReadingPermission Dependent Schema for Admin Settings in Open Event Server

Creating inter-component actions in Open Event Front-end

Open Event Front-end project is built using Ember JS, which lets us create modular components. While implementing the sessions route on the project, we faced a challenge of sending inter-component actions. To solve this problem we used the ember action helpers which bubbles up the action to the controller and sends it to the desired component. How did we solve it?

Handling actions in ember

In ember we can handle actions using the {{action ‘function’}} where function executes every time an action on element is triggered. This can be used to handle actions for the component. You can define actions for elements as:

<a href="#" class="item {{if (eq selectedTrackId track.id) 'active'}}" {{action 'filter' track.id}}>
  {{track.name}}
</a>

All the actions defined using the {{action}}  helper are defined inside the actions section of the component. Here the action filter is getting binded to onClick event of the anchor tag. The above helper will pass the name of the track(track) as a parameter to the filter function defined in the component.

Whenever the element is clicked the filter function defined in the component will get triggered. This method works for handling actions within a component, however when we need to trigger inter-component actions this approach does not help.

Sending actions from component to controller

We will send an action from the component to the controller of the route in which the component is rendered using a computed property defined inside the controller, which watched the selectedTrackId.

{{public/session-filter selectedTrackId=selectedTrackId tracks=tracks}}

Whenever the anchor is clicked it passes the id of the selected track to the filter function of the component. Inside the filter function we set the selectedTrackId variable passed to the component inside the route template as specified above.

actions: {
  filter(trackId = null) {
    this.set('selectedTrackId', trackId);
  }
}

The selectedTrackId is a observed by a computed property defined in the controller which modified the track list based on the id passed by the sessions-filter component.

Handling action in the controller

Inside the controller we have a computed property which observes the sessions array and the selectedTrackId which is passed by the session-filter component to the controller called sessionsByTracks.

sessionsByTracks: computed('model.sessions.[]', 'selectedTrackId', function() {
  if (this.get('selectedTrackId')) {
    return chain(this.get('model.sessions'))
      .filter(['track.id', this.get('selectedTrackId')])
      .orderBy(['track.name', 'startAt'])
      .value();
  } else {
    return chain(this.get('model.sessions'))
      .orderBy(['track.name', 'startAt'])
      .groupBy('track.name')
      .value();
  }
}),
tracks: computed('model.sessions.[]', function() {
  return chain(this.get('model.sessions'))
    .map('track')
    .uniqBy('id')
    .orderBy('name')
    .value();
})

sessionsByTracks is the property gets filtered using the lodash functions based upon the id of session passed to it. On the first render all the sessions are displayed as the selectedTrackId is set to null.

{{public/session-list sessions=sessionsByTracks}}

This property is passed to the session-list component which renders the filtered list of session based on the selected session in session-filter component. Check the source code for the example here.

Resources

Continue ReadingCreating inter-component actions in Open Event Front-end

Building Metapackages to Customize the Meilix Linux Distro Generator

This article will guide you to build a metapackage with your required configuration and to use it inside the meilix distro to customize and use the inbuild metapackages to customize the configuration file of packages and properties of various browsers.
Metapackages are scripts which contain the link to existing packages. It’s a .deb file. As packages include dependencies analogically metapackages include packages. So, we can say that metapackages do not contain actual software, they depend upon packages. This guide will help you to make your own metapackage easily, configure it and distribute it among your friends and other Linux users.

How to get started to build a metapackage for meilix?

At first one needs to sort out the metapackages that it needs to be there in the metapackages. One can also come up with the package which he don’t want to install but that comes under dependency of the some package.
It’s easy, a few lines of commands and you will have a .deb metapackage in your hand.
We will use equivs as a tool to build metapackages.

Install equivs :

sudo apt-get install equivs
equivs-control ns-control

This will create a file with the name ns-control and that files looks similar to this:

1.### Commented entries have reasonable defaults.
2.### Uncomment to edit them.
3.# Source: <source package name; defaults to package name>
4.Section: misc
5.Priority: optional
6.# Homepage: <enter URL here; no default>
7.Standards-Version: 3.9.2
8.Package: <package name; defaults to equivs-dummy>
9.# Version: <enter version here; defaults to 1.0>
10.# Maintainer: Your Name <yourname@example.com>
11.# Pre-Depends: <comma-separated list of packages>
12.# Depends: <comma-separated list of packages>
13.# Recommends: <comma-separated list of packages>
14.# Suggests: <comma-separated list of packages>
15.# Provides: <comma-separated list of packages>
16.# Replaces: <comma-separated list of packages>
17.# Architecture: all
18.# Multi-Arch: <one of: foreign|same|allowed>
19.# Copyright: <copyright file; defaults to GPL2>
20.# Changelog: <changelog file; defaults to a generic changelog>
21.# Readme: <README.Debian file; defaults to a generic one>
22.# Extra-Files: <comma-separated list of additional files for the doc directory>
23.# Files: <pair of space-separated paths; First is file to include, second is destination>
24.# <more pairs, if there's more than one file to include. Notice the starting space>
25.Description: <short description; defaults to some wise words>
long description and info

second paragraph

 

Now the question is what to do with this:
Line 3-7 : the control information of the source packages.
Line 8-25 : the control information for the binary packages
Source packages are those packages which contain the source code of the package. One can compile the source and install it in any architecture of the machine .
Binary packages are those packages which are specific to the architecture of machine. And one can easily install it with a click.

Description of important lines:
Line 3: The name of the source package, same to Line 8
Line 4: section of the distribution
There are various categories in which a source package can be put into.
Line 9: version of the package, it is helpful if you want it install packages of a particular version
Line 11: you have to write the dependencies of the packages #better remain this commented
Line 12 : Include the name of the packages that you want to include in the metapackage
Line 17: Architecture is set to all that is for both 32 and 64 bit.
Line 25: Provide description

Next is what
Then after filling up the text file, now it’s time to build it.

Build the package:

equivs-build ns-control

Now it will run and will give you a .deb file.
dpkg i *.deb will install the deb file.

This is the metapackage which contains the packages which you have included.
I have used this wiki as a source for the required information.

Suppose one of most popular metapackage : gnome-desktop-environment – It is the a desktop environment gnome flavoured. It gives the graphical user interface to the user with popular email, office tools, music and other wide range of applications.

How a common Linux user can get the benefit of it?

We know that most of the people avoid Linux because of its beautiful command line feature. They just want to use mouse/touchpad throughout.
With the help of this, a person can build a metapackage. This one can distribute to its friend and can also use for the future purpose.
One can also use this to make a collection of metapackages of different packages like hacking tools, text tools, etc.

How we uses the metapackages?

Meilix script uses the metapackages for building of all the required packages. In our webapp version (meilix-generator) we made several metapackages that will be asked from the user and a user can choose one among them according to its requirement. It will also contain the information that which packages the metapackage is made of.

Suppose event metapackages include the packages needed by the people for the events purpose which will predefined by us and they will consist of lightweight text editor, media player, document viewer etc. In an education related metapackage one contain packages related to school, workshop.

Now meilix repo contains its own metapackages that it uses to contain the distro.

How meilix metapackage is used to control distro configuration?

We can even control the distro properties including the browser configuration, it’s startup page, search page and many more things through metapackages. Let’s see how:

We created a metapackage with the name meilix-default-settings and used it to config various features in the distro. The meilix settings metapackage consists of etc folder where we can made the changes to get it on the distro. We can even include property folder in the .config under skel folder to copy the changes into the home folder of the new user. To change the chrome configuration, we need to edit the chrome.json file. To change firefox configuration we need to edit prefs.js file.

The metapackage folder is: https://github.com/fossasia/meilix/tree/master/meilix-default-settings

Repository using metapackages

https://github.com/fossasia/meilix
https://github.com/fossasia/meilix-generator  (the webapp)

Continue ReadingBuilding Metapackages to Customize the Meilix Linux Distro Generator

Creating a Responsive Menu in Open Event Frontend

Open Event Frontend uses semantic ui for creating responsive HTML components, however there are some components that are not responsive in nature like buttons & menus. Therefore we need to convert tabbed menus to a one column dropdown menu in mobile views. In this post I describe how we make menus responsive. We are creating a semantic UI custom styling component in Ember to achieve this.

In Open Event we are using the tabbed menus for navigation to a particular route as shown below.

Menu (Desktop)

As you can see there is an issue when viewing the menu on mobile screens.

Menu (Mobile)

Creating custom component for menu

To make the menu responsive we created a custom component called tabbed-navigation which converts the horizontal menu into a vertical dropdown menu for smaller screens. We are using semantic ui styling components for the component to implement the vertical dropdown for mobile view.

tabbed-navigation.js

currentRoute: computed('session.currentRouteName', 'item', function() {
  var path = this.get('session.currentRouteName');
  var item = this.get('item');
  if (path && item) {
    this.set('item', this.$('a.active'));
    this.$('a').addClass('vertical-item');
    return this.$('a.active').text().trim();
  }
}),
didInsertElement() {
  var isMobile = this.get('device.isMobile');
  if (isMobile) {
    this.$('a').addClass('vertical-item');
  }
  this.set('item', this.$('a.active'));
},
actions: {
  toggleMenu() {
    var menu = this.$('div.menu');
    menu.toggleClass('hidden');
  }
}

In the component we check if the device is mobile & change the classes accordingly. For mobile devices we add the vertical-item class to all the items in the menu. We set a property called item in the component which stores the selected item of the menu.

We add a computed property called currentRoute which observes the current route and the selected item, and sets the item to currently active route, and returns the name of the current route.

We add an action toggleMenu which is used to toggle the display of the vertical menu for mobile devices.

tabbed-navigation.hbs

We add a vertical menu dynamically for mobile devices with a button and the name of the current selected item which is stored in currentRoute variable, we also toggle between horizontal & vertical menu based on the screen size.

{{#if device.isMobile}}
  <div role="button" class="ui segment center aligned" {{action 'toggleMenu'}}>
    {{currentRoute}}
  </div>
{{/if}}
<div role="button" class="mobile hidden ui fluid stackable {{unless isNonPointing (unless device.isMobile 'pointing')}} {{unless device.isMobile (if isTabbed 'tabular' (if isVertical 'vertical' 'secondary'))}} menu" {{action 'toggleMenu'}}>
  {{yield}}
</div>

tabbed-navigation.scss

.tabbed-navigation {
  .vertical-item {
    display: block !important;
    text-align: center;
  }
}

Our custom component must look like an item of the menu, to ensure this we use display block property which will allow us to place the menu appear below the toggle button. We also center the menu items so that it looks more like a vertical dropdown.

{{#tabbed-navigation}}
  {{#link-to 'events.view.index' class='item'}}
    {{t 'Overview'}}
  {{/link-to}}
  {{#link-to 'events.view.tickets' class='item'}}
    {{t 'Tickets'}}
  {{/link-to}}
  <a href="#" class='item'>{{t 'Scheduler'}}</a>
  {{#link-to 'events.view.sessions' class='item'}}
    {{t 'Sessions'}}
  {{/link-to}}
  {{#link-to 'events.view.speakers' class='item'}}
    {{t 'Speakers'}}
  {{/link-to}}
  {{#link-to 'events.view.export' class='item'}}
    {{t 'Export'}}
  {{/link-to}}
{{/tabbed-navigation}}

To use this component all we need to do is wrap our menu inside the tabbed-navigation component and it will convert the horizontal menu to the vertical menu for mobile devices.

The outcome of this change on the Open Event Front-end now looks like this:

Thank you for reading the blog, you can check the source code for the example here.

Resources

Continue ReadingCreating a Responsive Menu in Open Event Frontend

Step by step guide for Beginners in Web Development for Open Event Frontend

Originally the frontend and backend of the Open Event Server project were handled by FLASK with jinja2 being used for rendering templates. As the size of the project grew, it became difficult to keep track of all the modifications made on the frontend side. It also increased the complexity of the code. As a result of this, a new project Open Event Frontend was developed by decoupling the backend and frontend of the Open Event Orga Server. Now the server is being converted fully into functional API and database and the open event frontend project is primarily the frontend for the Open event server API where organisers, speakers and attendees can sign-up and perform various functions.     

The Open Event Frontend project is built on JavaScript web application framework, “Ember.js”. To communicate with the server API Ember.js user Ember data which is a data persistence module via the exposed endpoints. Suppose if you’re coming from the Android background, soon after diving into the web development you can relate that the web ecosystem is much larger than the mobile one and for the first timers it can be difficult to adopt with it because of the reason that in web there are multiple ways to perform a task which can be restricted to very few in the case of Android. For web applications, one can find that much more components are involved in setting up the project while in android one can easily start contributing to project soon after compiling it in Android Studio. One thing which is relatable for both the android and web development is that in the case of android one has to deal with the varying screen sizes and compatibility issue while in the web one has to deal with adding support for different browsers and versions which can be really annoying.

Now let’s see how one can start contributing to the Open event frontend project while having no or a little knowledge of web development. In case if you’ve previous knowledge of JavaScript then you can skip the step 1 and move directly to another step which is learning the framework.

(Here all the steps have been explained in reference if you’re switching from Android  to Web development.)

Step 1. Learning the Language – JavaScript

Now that when you’ve already put your feet into the web development it’s high time to get acquainted with the JavaScript. Essentially in the case of Ember which is easy to comprehend, you can though start with learning the framework itself but the executables file are written in JavaScript so to write them you must have basic knowledge of the concepts in the language. Understanding of JavaScript will help in letting know where the language ends and where the framework starts. It will also help in better understanding of the framework. In my opinion, the basic knowledge of JavaScript like the scope of variables, functions, looping, conditional statements, modifying array and dictionaries, ‘this’ keyword etc. helps in writing and understanding the .js files easily. Also, sometimes in JavaScript, an error might not be thrown as an exception while compiling but it may evaluate the program to undefined, knowledge of the language will help in debugging the code.

Step 2. Learning the Framework – Ember

Ember is a JavaScript Framework which works on Model-View-Controller(MVC) approach. The Ember is a battery included framework which generates all the boilerplate code including components, routes. Templates etc.  required for building an application’s frontend. It is very easy to understand and comprehend. In Ember, we can easily define the data models and relationships and ember will automatically guess the correct API endpoints. Apart from this, the documentation of the ember on its website is very much sufficient to start with. One can easily start developing applications after going through the tutorial mentioned on the ember’s website.  

Step 3. Testing

In the case of Android application development to write test we use android libraries like Mockito and Robolectric. Also, testing is a bit more difficult in Android app development because we have to explicitly write the test but it is a lot easier in the case of web development. In the case of Ember, it provides an ease of testing which no other framework and libraries provide. While generating a component or template ember itself generates the test files for them and all we have to do is to change them according to our requirement. Ember generates unit, acceptance and integration tests by making testing easier. So we don’t have to write the test explicitly we only have to modify the test files generated by ember.    

Step 4. Styling

In Android we have colors.xml, styles.xml, drawables, gradients, shapes etc. for styling our application but in the case of Web, we have Cascading Style Sheets (CSS) for styling our application. Simply using pure CSS make design complicated and difficult to understand, so to make it easier we combine a bunch of design elements with a style file and use Syntactically Awesome Style Sheets (Saas) with mixins to do that which makes creating styles a lot easier and more straightforward. So for styling, our web application one should have the knowledge of HTML as well as CSS.

In conclusion, I can say that learning web development requires learning a few things in parallel which includes learning a language, learning a framework, how to perform testing and different styling skills to make an application beautiful. Due to dynamic nature of the JavaScript and the sheer number of packages and components involved, as opposed to the safe environment that Android Studio provides, it can be sometimes really frustrating.  However, once learned the basics, the knowledge and skills can be easily transferred and applied over and over again.    

Continue ReadingStep by step guide for Beginners in Web Development for Open Event Frontend