You are currently viewing Integration of SUSI AI in Twitter

Integration of SUSI AI in Twitter

We will be making a Susi messenger bot on Twitter. The messenger bot will tweet back to your tweets and reply instantly when you chat with it. Feel free to tweet to the already made SUSI AI account (mentioning @SusiAI1 in it). Follow it, to have a personal chat.

Make a new account, which you want to use as the bot account. You can make one from sign up option from


To create your account on -:
1. Twitter
2. Github
3. Heroku
4. Node js

Setup your own Messenger Bot

1. Make a new app here, to know the access token and other properties for our application. These properties will help us communicate with Twitter.

Click “modify the app permissions” link, as shown here:

Select the Read, Write and Access direct messages option:

Don’t forget to click the update settings button at the bottom.

Click the Generate My Access Token and Token Secret button.

3. Create a new heroku app here.

This app will accept the requests from Twitter and Susi api.

4. Create a config variable by switching to settings page of your app.
  The name of your first config variable should be HEROKU_URL and its value is the url address of the heroku app created by you.

The other config variables that need to be created will be these:

The corresponding names of these variables in the same order are:
  i) Access token
  ii) Access token secret
  iii) Consumer key
  iv) Consumer secret
We need to visit our app from here, the keys and access tokens tab will help us with the values of these variables.

  1. Let’s start with the code part of the integration of SUSI AI to Twitter. We will be using Node js to achieve this integration.

First we need to require some packages:

Now using the Twit module, we need to authenticate our requests, by using our environment variables as set up in step 4:

Now let’s make a user stream:

var stream ='user');

We will be using the capabilities of this stream, to catch events of getting tweeted or receiving a direct message by using:

stream.on('tweet', functionToBeCalledWhenTweeted);
stream.on('follow', functionToBeCalledWhenFollowed);
stream.on('direct_message', functionToBeCalledWhenDirectMessaged);

So, when a person tweets to our account like this:

We can catch it with ‘tweet’ event and execute a set of instructions:

stream.on('tweet', tweetEvent);

    function tweetEvent(eventMsg) {
        var replyto = eventMsg.in_reply_to_screen_name;     

       // to store the message tweeted excluding '@SusiAI1' substring
        var text = eventMsg.text.substring(9);

        // to store the name of the tweeter
        var from = eventMsg.user.screen_name;
        if (replyto === 'SusiAI1') {
            var queryUrl = '' + encodeURI(text);
            var message = '';
                url: queryUrl,
                json: true
            }, function (err, response, data) {
                if (!err && response.statusCode === 200) {
                    // fetching the answer from the data object returned
                                        message = data.answers[0].actions[0].expression + data;

                else {
                    message = 'Oops, Looks like Susi is taking a break';    
                // If the message length is more than tweet limit
                if(message.length > 140){
                    tweetIt('@' + from + ' Sorry due to tweet word limit, I have sent you a personal message. Check inbox'+date);
                    sendMessage(from, message);
                    tweetIt('@' + from + ' ' + message + date);
  • When we a person follows this SUSI AI account, we can thank him/her by making use of the “follow” event. Also, we need to follow him/her back, to enable personal chat between Susi and that person (according to the rules of twitter):

function followed(eventMsg) {
        console.log('Follow event !');
        var name =;
        var screenName = eventMsg.source.screen_name;
        var user_id1 = eventMsg.source.id_str;

        // To follow back the person.'friendships/create', {user_id : user_id1},  function(err, tweets, response){
            if (err) {
                console.log("Couldn't follow back!");
            else {    
tweetIt('@' + screenName + ' Thank you for following me! I followed you back, you can also direct message me now! ');
                console.log("Followed back!");

When we personally message this SUSI AI account

This can be handled through the ‘direct_message’ event:

stream.on('direct_message', reply);
    function reply(directMsg) {
        console.log('You receive a message!');
        // If its our own bot messaging, ignore it, as this can lead to an infinite loop when we answer a user.
        if (directMsg.direct_message.sender_screen_name === 'SusiAI1') {

        // code to fetch the reply from SUSI API
        // reply the user with the SUSI API's message
        sendMessage(directMsg.direct_message.sender_screen_name, message);
  • The tweetIt and sendMessage function code can be seen from the repo code.

6. Connect the heroku app to the forked repository.

Connect the app to Github by selecting the name of this forked repository.

7. Deploy on development branch. If you intend to contribute, it is recommended to Enable Automatic Deploys.

Branch Deployment.

Successful Deployment.

  1. Visit your own personal account and tweet to this new bot account with your query and enjoy a tweet back from the bot account! Also, you can enjoy personal chatting with Susi.

    Feel free to play around with the already made SUSI AI account on twitter here. Follow it, to have a personal chat with it.


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.