Responsive UI: Testing & Reporting

Few days back I wrote a blog about how to make a website responsive. But how do you exactly check for responsiveness of a website? Well, you can do it using your browser itself. Both Mozilla Firefox and Google Chrome provides responsive mode for testing responsiveness of websites for standard resolutions and also to drag and check for any resolution. Open Event Organizer’s Server has quite some responsive issues, so I would tell about reporting the issues as well.

Continue ReadingResponsive UI: Testing & Reporting

Implementing Admin Trash in Open Event

So last week I had the task of implementing a trash system for the Admin. It was observed that sometimes a user may delete an item and then realize that the item needs to be restores. Thus a trash system works well in this case. Presently the items that are being moved to the trash are:

  • Deleted Users
  • Deleted Events
  • Deleted Sessions

So it works like this. I added a column in_trash to the tables User, Event and Sessions to mark whether the item is in the trash or not

in_trash = db.Column(db.Boolean, default=False)

So depending on whether the value is True or False the item will be in the trash of the admin. Thus for a normal user on deleting an event, user or session a message would flash that the item is deleted and the item would not be shown in the table list of the user. However it would not be deleted from the database.

trash4.png

trash5.png

Thus for the user the item is deleted. The item’s in_trash property is set to True and it gets moved to the trash. The items are displayed in the “Deleted Items” section of the Admin panel

trash1trash2trash3

The items deleted are displayed in the trash and as soon as they deleted in the trash they are deleted from the database permanently. A message will flash for the Admin when it is deleted

trash11

trash10.png

Thus the trash is implemented. 🙂

Two more things are left:

  • To restore items from trash
  • To automatically delete the items in trash after an inactivity of 30 days

This will soon be implemented 🙂

Continue ReadingImplementing Admin Trash in Open Event

Implementing revisioning feature in Open Event

{ Repost from my personal blog @ https://blog.codezero.xyz/implementing-revisioning-feature-in-open-event }

As I said in my previous blog post about Adding revisioning to SQLAlchemy Models,

In an application like Open Event, where a single piece of information can be edited by multiple users, it’s always good to know who changed what. One should also be able to revert to a previous version if needed.

Let’s have a quick run through on how we can enable SQLAlchemy-Continuum on our project.

  1. Install the library SQLAlchemy-Continuum with pip
  2. Add __versioned__ = {} to all the models that need to be versioned.
  3. Call make_versioned() before the models are defined
  4. Call configure_mappers from SQLAlchemy after declaring all the models.

Example:

import sqlalchemy as sa  
from sqlalchemy_continuum import make_versioned

# Must be called before defining all the models
make_versioned()

class Event(Base):

    __tablename__ = 'events'
    __versioned__ = {}  # Must be added to all models that are to be versioned

    id = sa.Column(sa.Integer, primary_key=True, autoincrement=True)
    name = sa.Column(sa.String)
    start_time = sa.Column(db.DateTime, nullable=False)
    end_time = sa.Column(db.DateTime, nullable=False)
    description = db.Column(db.Text)
    schedule_published_on = db.Column(db.DateTime)

# Must be called after defining all the models
sa.orm.configure_mappers()

We have SQLAlchemy-Continuum enabled now. You can do all the read/write operations as usual. (No change there).

Now, for the part where we give the users an option to view/restore revisions. The inspiration for this, comes from wordpress’s wonderful revisioning functionality.

The layout is well designed. The differences are shown in an easy-to-read form. The slider on top makes it intuitive to move b/w revisions. We have a Restore this Revision button on the top-right to switch to that revision.

A similar layout is what we would like to achieve in Open Event.

  1. A slider to switch b/w sessions
  2. A pop-over infobox on the slider to show who made that change
  3. A button to switch to that selected revision.
  4. The colored-differences shown in side-by-side manner.

To make all this a bit easier, SQLAlchemy-Continuum provides us with some nifty methods.

count_versions is a method that allows us to know the number of revisions a record has.

event = session.query(Event).get(1)  
count = count_versions(event)  # number of versions of that event

Next one is pretty cool. All the version objects have a property called as changeset which holds a dict of changed fields in that version.

event = Event(name=u'FOSSASIA 2016', description=u'FOSS Conference in Asia')  
session.add(article)  
session.commit(article)

version = event.versions[0]  # first version  
version.changeset  
# {
#   'id': [None, 1],
#   'name': [None, u'FOSSASIA 2016'],
#   'description': [None, u'FOSS Conference in Asia']
# }

event.name = u'FOSSASIA 2017'  
session.commit()

version = article.versions[1]  # second version  
version.changeset  
# {
#   'name': [u'FOSSASIA 2016', u'FOSSASIA 2017'],
# }

As you can see, dict holds the fields that changed and the content the changed (before and after). And this is what we’ll be using for generating those pretty diffs that the guys and girls over at wordpress.com have done. And for this we’ll be using two things.

  1. A library named diff-match-patch. It is a library from Google which offers robust algorithms to perform the operations required for synchronizing plain text.
  2. A small recipe from from code.activestate.com Line-based diffs with the necessary HTML markup for styling insertions and deletions.
import itertools  
import re

import diff_match_patch

def side_by_side_diff(old_text, new_text):  
    """
    Calculates a side-by-side line-based difference view.

    Wraps insertions in <ins></ins> and deletions in <del></del>.
    """
    def yield_open_entry(open_entry):
        """ Yield all open changes. """
        ls, rs = open_entry
        # Get unchanged parts onto the right line
        if ls[0] == rs[0]:
            yield (False, ls[0], rs[0])
            for l, r in itertools.izip_longest(ls[1:], rs[1:]):
                yield (True, l, r)
        elif ls[-1] == rs[-1]:
            for l, r in itertools.izip_longest(ls[:-1], rs[:-1]):
                yield (l != r, l, r)
            yield (False, ls[-1], rs[-1])
        else:
            for l, r in itertools.izip_longest(ls, rs):
                yield (True, l, r)

    line_split = re.compile(r'(?:r?n)')
    dmp = diff_match_patch.diff_match_patch()

    diff = dmp.diff_main(old_text, new_text)
    dmp.diff_cleanupSemantic(diff)

    open_entry = ([None], [None])
    for change_type, entry in diff:
        assert change_type in [-1, 0, 1]

        entry = (entry.replace('&', '&amp;')
                      .replace('<', '&lt;')
                      .replace('>', '&gt;'))

        lines = line_split.split(entry)

        # Merge with previous entry if still open
        ls, rs = open_entry

        line = lines[0]
        if line:
            if change_type == 0:
                ls[-1] = ls[-1] or ''
                rs[-1] = rs[-1] or ''
                ls[-1] = ls[-1] + line
                rs[-1] = rs[-1] + line
            elif change_type == 1:
                rs[-1] = rs[-1] or ''
                rs[-1] += '<ins>%s</ins>' % line if line else ''
            elif change_type == -1:
                ls[-1] = ls[-1] or ''
                ls[-1] += '<del>%s</del>' % line if line else ''

        lines = lines[1:]

        if lines:
            if change_type == 0:
                # Push out open entry
                for entry in yield_open_entry(open_entry):
                    yield entry

                # Directly push out lines until last
                for line in lines[:-1]:
                    yield (False, line, line)

                # Keep last line open
                open_entry = ([lines[-1]], [lines[-1]])
            elif change_type == 1:
                ls, rs = open_entry

                for line in lines:
                    rs.append('<ins>%s</ins>' % line if line else '')

                open_entry = (ls, rs)
            elif change_type == -1:
                ls, rs = open_entry

                for line in lines:
                    ls.append('<del>%s</del>' % line if line else '')

                open_entry = (ls, rs)

    # Push out open entry
    for entry in yield_open_entry(open_entry):
        yield entry

So, what we have to do is,

  1. Get the changeset from a version
  2. Run each field’s array containing the old and new text through the side_by_side_diff method.
  3. Display the output on screen.
  4. Use the markups <ins/> and <del/> to style changes.

So, we do the same for each version by looping through the versions array accessible from an event record.

For the slider, noUiSlider javascript library was used. Implementation is simple.

<div id="slider"></div>

<script type="text/javascript">  
    $(function () {
        var slider = document.getElementById('slider');
        noUiSlider.create(slider, {
            start: [0],
            step: 1,
            range: {
                'min': 0,
                'max': 5
            }
        });
    });
</script>

This would create a slider that can go from 0 to 5 and will start at position 0.

By listening to the update event of the slider, we’re able to change which revision is displayed.

slider.noUiSlider.on('update', function (values, handle) {  
    var value = Math.round(values[handle]);
    // the current position of the slider
    // do what you have to do to change the displayed revision
});

And to get the user who caused a revision, you have to access the user_idparameter of the transaction record of a particular version.

event = session.query(Event).get(1)  
version_one = event.versions[0]  
transaction = transaction_class(version_one)  
user_id = transaction.user_id

So, with the user ID, you can query the user database to get the user who made that revision.

The user_id is automatically populated if you’re using Flask, Flask-login and SQLAlchemy-Continuum’s Flask Plugin. Enabling the plugin is easy.

from sqlalchemy_continuum.plugins import FlaskPlugin  
from sqlalchemy_continuum import make_versioned

make_versioned(plugins=[FlaskPlugin()])

This is not a very detailed blog post. If you would like to see the actual implementation, you can checkout the Open Event repository over at GitHub. Specifically, the file browse_revisions.html.

The result is,

Still needs some refinements in the UI. But, it gets the job done :wink:

Continue ReadingImplementing revisioning feature in Open Event

Introduction to JWT

In this post, I will try to explain what is JWT, what are its advantages and why you should be using it.

JWT stands for JSON Web Tokens. Let me explain what each word means.

  1. Tokens – Token is in tech terms a piece of data (claim) which gives access to certain piece of information and allows certain actions.
  2. Web – Web here means that it was designed to be used on the web i.e. web projects.
  3. JSON – JSON means that the token can contain json data. In JWT, the json is first serialized and then Base64 encoded.

A JWT looks like a random sequence of strings separated by 2 dots. The yyyyy part which you see below has the Base64 encoded form of json data mentioned earlier.

xxxxx.yyyyy.zzzzz

The 3 parts in order are –

  • Header – Header is the base64 encoded json which contains hashing algorithm on which the token is secured.
  • Payload – Payload is the base64 encoded json data which needs to be shared through the token. The json can include some default keys like iss (issuer), exp (expiration time), sub (subject) etc. Particularly exp here is the interesting one as it allows specifying expiry time of the token.

At this point you might be thinking that how is JWT secure if all we are doing is base64 encoding payload. After all, there are easy ways to decode base64. This is where the 3rd part (zzzzz) is used.

  • Signature – Signature is a hashed string made up by the first two parts of the token (header and payload) and a secret. The secret should be kept confidential to the owner who is authenticating using JWT. This is how the signature is created. (assuming HMACSHA256 as the algorithm)
HMACSHA256(
  xxxxx + "." + yyyyy,
  secret)

How to use JWT for authentication

Once you realize it, the idea of JWT is quite simple. To use JWT for authentication, what you do is you make the client POST their username and password to a certain url. If the combination is correct, you return a JWT including username in the “Payload”. So the payload looks like –

{
  "username": "john.doe"
}

Once the client has this JWT, they can send the same in Header when accessing protected routes. The server can read the JWT from the header and verify its correctness by matching the signature (zzzzz part) with the encoded hash created using header+payload and secret (generated signature). If the strings match, it means that the JWT is valid and therefore the request can be given access to the routes. BTW, you won’t have to go through such a deal for using JWT for authentication, there are already a handful of libraries that can do these for you.

Why use JWT over auth tokens ?

As you might have noticed in the previous section, JWT has a payload field that can contain any type of information. If you include username in it, you will be able to identify the user just by validating the JWT and there will be no need to read from the database unlike typical tokens which require a database read cycle to get the claimed user. Now if you go ahead and include permission informations in JWT too (like'isAdmin': True), then more database reads can be prevented. And this optimization comes at no cost at all. So this is why you should be using JWT.

We at Open Event use JWT for our primary means of authentication. Apart from that, we support basic authentication too. Read this post for some points about that.

That’s it for now. Thanks for reading.

 

{{ Repost from my personal blog http://aviaryan.in/blog/gsoc/jwt-intro.html }}

Continue ReadingIntroduction to JWT

How can you add a bug?

It’s very simple to start testing, You don’t need any special experience in testing area.To start testing in Open Event project you need to open our web application http://open-event.herokuapp.com/ and you can start.Isn’t it easy? So You should focus on finding as many bugs as possible to provide your users with perfectly working software. If you find a bug you need to describe many details

How can you report a bug to Open Event?

Go to Github page issues, click new issue(green button).

Screen Shot 2016-07-01 at 21.03.45.png

Our Requirements:

Good description – If you found a bug you have to reproduce it, so you have nice background to describe it very well. It’s important because, good issue’s description saves developers time. They don’t need to ask announcer about details of bug. The best description which tester can add is how developer can simply achieve a bug step by step.

Logs – description is sometimes not enough so you need to attach logs which are generated from our server(It’s nice if you have access, if you don’t have ask me)

Pictures – it’s helpful, because we can quickly find where bug is located

Labels – You need to assign Screen Shot 2016-07-01 at 21.26.17.png label to issue

That’s all!

 

Continue ReadingHow can you add a bug?

Sending Email using Sendgrid API

sendgrid1

One of the important features while creating server side code for some website/ web application is sending emails. But how do we send emails. There are different ways and packages using which you can setup SMTP ports and send emails. So why specifically sendgrid? Because along with SMTP relay, sendgrid also allows you to send emails using its Web API which makes work much easier. Here, we will discuss about using Web API.

Continue ReadingSending Email using Sendgrid API

Error Handling in Retrofit 2

For the Open Event android app we were using retofit 1.9 with an okhttp stack plus a gson parser but recently retrofit 2.0 was released and it was a major update in the sense that it a lot of things have been changed.

For starters, you don’t have to declare synchronous and asynchronous requests upfront and you can just decide that while executing. The code for that will look something like this. This is how we define our request methods in our api service

import retrofit.Call;
public interface APIService {
   @POST(“/list”)
   Call<Repo> loadRepo();
}

Now if we want to make a synchronous request, we can make it like

Call<Repo> call = service.loadRepo();
Repo repo = call.execute();

and for an asynchronous request, we can call enqueue()

Call<Repo> call = service.loadRepo();
call.enqueue(new Callback<Repo>() {
    @Override
    public void onResponse(Response<Repo> response) {
    // Get result Repo from response.body()    
    }
    @Override
    public void onFailure(Throwable t) {

    }
});

And another thing that changed in the async call throws a throwable on failure, so essentially the RetrofitError class is gone and since we were using that in our app, we had to modify the whole error handling in the app, basically from the grounds up.

So, when we decided to move to retrofit 2 after the stable version was released, we had to change a lot of code and the main part that was affected was the error handling. So, replacing the retrofitError class, I used the throwable directly to retrieve the error type something like this

if (error.getThrowable() instanceof IOException) { 
    errorType = “Timeout”; 
    errorDesc = String.valueOf(error.getThrowable().getCause()); 
} 
else if (error.getThrowable() instanceof IllegalStateException) {                 
    errorType = “ConversionError”; 
    errorDesc = String.valueOf(error.getThrowable().getCause()); 
} else { 
    errorType = “Other Error”; 
    errorDesc = String.valueOf(error.getThrowable().getLocalizedMessage()); 
}

This was ofcourse for all failure events. And to handle all response events I compared the HTTP status codes and displayed the errors :

Integer statusCode = response.getStatusCode(); 
if (statusCode.equals(404)) { 
    // Show Errors in a dialog
    showErrorDialog(“HTTP Error”, statusCode + “Api Not Found”); 
}

This is how we can compare other HTTP errors in retrofit and assign the correct status accordingly. I personally think that this is a better implementation than Retrofit 1.9 and the RetrofitError was a bit tedious to work with. It wasn’t very thought of before implementation because it was not easy to tell what kind of error exactly occured. With Response codes, one can see what are the exact error one faces and can gracefully handle these errors.

Continue ReadingError Handling in Retrofit 2

Adding revisioning to SQLAlchemy Models

{ Repost from my personal blog @ https://blog.codezero.xyz/adding-revisioning-to-sqlalchemy-models }

In an application like Open Event, where a single piece of information can be edited by multiple users, it’s always good to know who changed what. One should also be able to revert to a previous version if needed. That is where revisioning comes into picture.

We use SQLAlchemy as the database toolkit and ORM. So, we wanted a versioning tool that would work well with our existing setup. That’s when I came across SQLAlchemy-Continuum – a versioning extension for SQLAlchemy.

Installation

The installation of the module is just like any other python library. (don’t forget to add it to your requirements.txt file, if you have one)

pip install SQLAlchemy-Continuum
Setup

Now, it’s time to enable SQLAlchemy-Continuum for the required models.

Let’s consider an Event model.

import sqlalchemy as sa

class Event(Base):
    __tablename__ = 'events'
    id = sa.Column(sa.Integer, primary_key=True, autoincrement=True)
    name = sa.Column(sa.String)
	start_time = sa.Column(db.DateTime, nullable=False)
    end_time = sa.Column(db.DateTime, nullable=False)
    description = db.Column(db.Text)
    schedule_published_on = db.Column(db.DateTime)

We need to do three things to enable SQLAlchemy-Continuum.

  1. Call make_versioned() before the model(s) is/are defined.
  2. Add __versioned__ = {} to all the models that we want to be versioned
  3. Call configure_mappers from SQLAlchemy after declaring all the models.
import sqlalchemy as sa
from sqlalchemy_continuum import make_versioned

# Must be called before defining all the models
make_versioned()

class Event(Base):

    __tablename__ = 'events'
    __versioned__ = {}  # Must be added to all models that are to be versioned

    id = sa.Column(sa.Integer, primary_key=True, autoincrement=True)
    name = sa.Column(sa.String)
	start_time = sa.Column(db.DateTime, nullable=False)
    end_time = sa.Column(db.DateTime, nullable=False)
    description = db.Column(db.Text)
    schedule_published_on = db.Column(db.DateTime)

# Must be called after defining all the models
sa.orm.configure_mappers()

SQLAlchemy-Continuum creates two tables:

  1. events_version which stores the version history for the Event model linked to the transaction table via a foreign key
  2. transaction which stores information about each transaction (like the user who performed the transaction, transaction datetime, etc)

SQLAlchemy-Continuum also adds listeners to Event to record all create, update, delete actions.

Usage

All the CRUD (Create, read, update, delete) operations can be done as usual. SQLAlchemy-Continuum takes care of creating a version record for each CUD operation. The versions can be easily accessed using the versions property that is now available in the Event model.

event = Event(name="FOSSASIA 2017", description="Open source conference in asia")
session.add(event)  # Event added to transaction
session.commit() # Transaction comitted and event recored created

# This would have created the first version record which can be accessed
event.versions[0].name == "FOSSASIA 2017"

# Lets make some changes to the recored.
event.name = "FOSSASIA 2016"
session.add(event)
session.commit()

# This would have created the second version record which can be accessed
event.versions[1].name == "FOSSASIA 2016"

# The first version record still remains and can be accessed
event.versions[0].name == "FOSSASIA 2017"

So, that’s how basic versioning can be implemented in SQLAlchemy using SQLAlchemy-Continuum.

Continue ReadingAdding revisioning to SQLAlchemy Models

Using S3 for Cloud storage

In this post, I will talk about how we can use the Amazon S3 (Simple Storage Service) for cloud storage. As you may know, S3 is a no-fuss, super easy cloud storage service based on the IaaS model. There is no limit on the size of file or the amount of files you can keep on S3, you are only charged for the amount of bandwidth you use. This makes S3 very popular among enterprises of all sizes and individuals.

Now let’s see how to use S3 in Python. Luckily we have a very nice library called Boto for it. Boto is a library developed by the AWS team to provide a Python SDK for the amazon web services. Using it is very simple and straight-forward. Here is a basic example of uploading a file on S3 using Boto –

import boto
from boto.s3.key import Key
# connect to the bucket
conn = boto.connect_s3(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY)
bucket = conn.get_bucket(BUCKET_NAME)
# set the key
key = 'key/for/file'
file = '/full/path/to/file'
# create a key to keep track of our file in the storage
k = Key(bucket)
k.key = key
k.set_contents_from_filename(file)

The above example uploads a file to s3 bucket BUCKET_NAME.

Buckets are containers which store data. The key here is the unique key for an item in the bucket. Every item in the bucket is identified by a unique key assigned to it. The file can be downloaded from the urlBUCKET_NAME.s3.amazonaws.com/{key}. It is therefore essential to choose the key name smartly so that you don’t end up overwriting an existing item on the server.

In the Open Event project, I thought of a scheme that will allows us to avoid conflicts. It relies on using IDs of items for distinguishing them and goes as follows –

  • When uploading user avatar, key should be ‘users/{userId}/avatar’
  • When uploading event logo, key should be ‘events/{eventId}/logo’
  • When uploading audio of session, key should be ‘events/{eventId}/sessions/{sessionId}/audio’

Note that to store user ‘avatar’, I am setting the key as /avatar and not /avatar.extension. This is because if user uploads pictures in different formats, we will end up storing different copies of avatars for the same user. This is nice but it’s limitation is that downloading file from the url will give the file without an extension. So to solve this issue, we can use the Content-Disposition header.

k.set_contents_from_filename(
	file,
	headers={
		'Content-Disposition': 'attachment; filename=filename.extension'
	}
)

So now when someone tries to download the file from that link, they will get the file with an extension instead of a no-extension “Choose what you want to do” file.

This covers up the basics of using S3 for your Python project. You may explore Boto’s S3 documentation to find other interesting functions like deleting a folder, copy one folder to another and so.

Also don’t forget to have a look at the awesome documentation we wrote for the Open Event project. It provides a more pictorial and detailed guide on how to setup S3 for your project.

 

{{ Repost from my personal blog http://aviaryan.in/blog/gsoc/s3-for-storage.html }}

Continue ReadingUsing S3 for Cloud storage

Using TabLayouts in your Android app

So while making a sessions schedule for the open event app, I wanted to separate the sessions on the basis of the days they are scheduled for to improve the visual clarity. So to do this I had various approaches like add a filter to separate by date or add checkboxes to show only checked dates but I though they’d look ugly. Instead the best option was to add tabs in a fragment with a viewpager to scroll within them : It looks appealing, has simple and clean UI, easier to implement with the new design library. So, naturally I opted for using the Tablayout from the design Library.

Earlier, when the Support design library was not introduce, it was really a tedious job to add it to our app since we had to extend Listeners to check for tab changes and we had to manually open fragments when a tab was selected or unselected or even when it was reselected. Essentially this meant a lot of errors and memory leaks. In the design library we essentially need to add tablayout and a viewpager to our layout like this :

<android.support.design.widget.AppBarLayout xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:app="http://schemas.android.com/apk/res-auto"
    android:layout_width="match_parent"
    android:layout_height="match_parent">

    <android.support.design.widget.TabLayout
        android:id="@+id/tabLayout"
        android:layout_width="match_parent"
        android:layout_height="wrap_content"
        app:tabGravity="fill"
        app:tabMode="fixed"
        app:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar" />

    <android.support.v4.view.ViewPager
        android:id="@+id/viewpager"
        android:layout_width="match_parent"
        android:layout_height="wrap_content"
        android:background="@android:color/white" />

</android.support.design.widget.AppBarLayout>

Next in our activity/ fragment, we can just inflate this view and create an adapter for the viewpager extending a FragmentPagerAdapter:

public class OurAdapter extends FragmentPagerAdapter {
    private final List<Fragment> mFragmentList = new ArrayList<>();
    private final List<String> mFragmentTitleList = new ArrayList<>();

    public ScheduleViewPagerAdapter(FragmentManager manager) {
        super(manager);
    }

    @Override
    public Fragment getItem(int position) {
        return mFragmentList.get(position);
    }

    @Override
    public int getCount() {
        return mFragmentList.size();
    }

    public void addFragment(Fragment fragment, String title, int day) {

        mFragmentList.add(fragment);
        mFragmentTitleList.add(title);
    }

    @Override
    public CharSequence getPageTitle(int position) {
        return mFragmentTitleList.get(position);
    }
}

Now I had to make dynamic number of tabs, since I wanted the app to customisable on the number of days listed in the json downloaded from the server. So, I made some changes in the traditional code. This is what we do in our activity/fragment’s onCreate/OnCreatView :

viewPager = (ViewPager) view.findViewById(R.id.viewpager);

for (int i = 0; i < daysofEvent; i++) {
    adapter.addFragment(new DayScheduleFragment(),title, dayNo);
}

viewPager.setAdapter(adapter);
scheduleTabLayout = (TabLayout) view.findViewById(R.id.tabLayout);
scheduleTabLayout.setupWithViewPager(viewPager);

This is it. Now we have a basic working tablayout in a viewpager. This also has the capability to change according to the number of days specified in the json we have written.

Earlier without the design library, we would have to even add switch cases in the FragmentPagerAdapter like this :

public class OurAdapter extends FragmentPagerAdapter {
 
 public TabsPagerAdapter(FragmentManager fm) {
    super(fm);
 }
 
 @Override
 public Fragment getItem(int index) {
 
 switch (index) {
 case 0:
    return new FirstFragment();
 case 1:
    return new SecondFragment();
 case 2:
    return new ThirdFragment();
 }
 
 return null;
 }

Then we would have to override methods to listen to activities in tabs :

@Override
public void onTabReselected(Tab tab, FragmentTransaction ft) {
}

@Override
public void onTabSelected(Tab tab, FragmentTransaction ft) {
// on tab selected
// show respected fragment view
   viewPager.setCurrentItem(tab.getPosition());
}

@Override
public void onTabUnselected(Tab tab, FragmentTransaction ft) {
}

And more code to listen for swiping within tabs in a viewpager:

/**
* on swiping the viewpager make respective tab selected
**/
viewPager.setOnPageChangeListener(new ViewPager.OnPageChangeListener() {

@Override
public void onPageSelected(int position) {

// on changing the page
// make respected tab selected
actionBar.setSelectedNavigationItem(position);
}

@Override
public void onPageScrolled(int arg0, float arg1, int arg2) {
}

@Override
public void onPageScrollStateChanged(int arg0) {
}
});

You see how easy this got with the inclusion of TabLayout.

Now for the final product I made after inflating the fragments and adding recyclerviews for the schedule, I got this :

Swipable tabs

I urge you to try swipable tabs in your app as well. Adios till next time.

Continue ReadingUsing TabLayouts in your Android app