Efficient use of event card component on Open Event Frontend

Ember JS is a powerful framework when it comes to code reusability. Components are at it’s core and enable the developers to reuse the same code at different places. The event-card component on Open event-front-end is one such component. It is used on various routes across the app thereby illustrating the usefulness. However, in this article we are going to see how components can be made even more efficient by rendering them differently for different situations.Originally the component was used to display events in the card format on the public page.

And this was the code :

<.div class="ui fluid event card">
 <.a class="image" href="{{href-to 'public' event.identifier}}">
   {{widgets/safe-image src=(if event.large event.large event.placeholderUrl)}}
 <./a>
 <.div class="content">
   <.a class="header" href="{{href-to 'public' event.identifier}}">
     <.span>{{event.name}}<./span>
   <./a>
   <.div class="meta">
     <.span class="date">
       {{moment-format event.startTime 'ddd, MMM DD HH:mm A'}}
     <./span>
   <./div>
   <.div class="description">
     {{event.shortLocationName}}
   <./div>
 <./div>
 <.div class="extra content small text">
   <.span class="right floated">
     <.i role="button" class="share alternate link icon" {{action shareEvent event}}><./i>
   <./span>
   <.span>
     {{#each tags as |tag|}}
       <.a>{{tag}}<./a>
     {{/each}}
   <./span>
 <./div>
<./div>

Next we modify it in such a way that it is suitable to be displayed on the explore route as well, and that requires it to be such that is instead of being box-like it should be possible to render it such that it is wide and takes the width of the container it is in. So How do we determine which version should be rendered when. In ember it is really easy to pass on parameters to components while calling them, and they can make use of these paraemeters as they are being rendered. It is best if the name of the parameters is chosen logically, here we want to make it wide for selected routes so we name it : isWide

And the code after modification, would be something like this with isWide taken into account. We will just wrap it an extra div which will conditionally add an extra class ‘wide’ if isWide is true.

<.div class="{{if isWide 'event wide ui grid row'}}">
<.!-- Previous code -->
<./div>

//And the corresponding styling for wide class


.event.wide {
  border-radius: 0 !important;
  margin: 0 !important;

  .column {
    margin: 0;
    padding: 0 !important;
  }

  img {
    height: 170px !important;
    object-fit: cover;
  }

.main.content {

  height: 130px;

  display: block;

}

}

Next What we are going to do is, modify the component to become yieldable. So that they can also be used to display the tickets of a user! `{{yield}}` allows code outside the component to be rendered inside it.

Let’s make a change so that, if the event card component is rendered on the my tickets page, then instead of hashtags it should display the ticket details. Which we will conveniently provide to the component externally (via {{yield}} ) Next we need to determine which version of the component should be rendered when? The hasBlock helper enables us to do just that. So the final code should look something just like this 😉 The hasBlock helper allows us to differentiate between the yieldable and non yieldable forms of the component.

<.div class="{{if isWide 'event wide ui grid row'}}"
 {{#if isWide}}
   {{#unless device.isMobile}}
     <.div class="ui card three wide computer six wide tablet column">
       <.a class="image" href="{{href-to 'public' event.identifier}}">
         {{widgets/safe-image src=(if event.large event.large event.placeholderUrl)}}
       <./a>
     <./div>
   {{/unless}}
 {{/if}}
 <.div class="ui card {{unless isWide 'event fluid' 'thirteen wide computer ten wide tablet sixteen wide mobile column'}}">
   {{#unless isWide}}
     <.a class="image" href="{{href-to 'public' event.identifier}}">
       {{widgets/safe-image src=(if event.large event.large event.placeholderUrl)}}
     <./a>
   {{/unless}}
   <.div class="main content">
     <.a class="header" href="{{href-to 'public' event.identifier}}">
       <.span>{{event.name}}<./span>
     <./a>
     <.div class="meta">
       <.span class="date">
         {{moment-format event.startTime 'ddd, MMM DD HH:mm A'}}
       <./span>
     <./div>
     <.div class="description">
       {{event.shortLocationName}}
     <./div>
   <./div>
   <.div class="extra content small text">
     <.span class="right floated">
       <.i role="button" class="share alternate link icon" {{action shareEvent event}}><./i>
     <./span>
     <.span>
       {{#if hasBlock}}
         {{yield}}
       {{else}}
         {{#each tags as |tag|}}
           <.a>{{tag}}<./a>
         {{/each}}
       {{/if}}
     <./span>
   <./div>
 <./div>
<./div> 

And now the component can be used for displaying the tickets, with the area displaying hashtags now being replaced by the order details.

 

 

Continue ReadingEfficient use of event card component on Open Event Frontend

Step by step guide for Beginners in Web Development for Open Event Frontend

Originally the frontend and backend of the Open Event Server project were handled by FLASK with jinja2 being used for rendering templates. As the size of the project grew, it became difficult to keep track of all the modifications made on the frontend side. It also increased the complexity of the code. As a result of this, a new project Open Event Frontend was developed by decoupling the backend and frontend of the Open Event Orga Server. Now the server is being converted fully into functional API and database and the open event frontend project is primarily the frontend for the Open event server API where organisers, speakers and attendees can sign-up and perform various functions.     

The Open Event Frontend project is built on JavaScript web application framework, “Ember.js”. To communicate with the server API Ember.js user Ember data which is a data persistence module via the exposed endpoints. Suppose if you’re coming from the Android background, soon after diving into the web development you can relate that the web ecosystem is much larger than the mobile one and for the first timers it can be difficult to adopt with it because of the reason that in web there are multiple ways to perform a task which can be restricted to very few in the case of Android. For web applications, one can find that much more components are involved in setting up the project while in android one can easily start contributing to project soon after compiling it in Android Studio. One thing which is relatable for both the android and web development is that in the case of android one has to deal with the varying screen sizes and compatibility issue while in the web one has to deal with adding support for different browsers and versions which can be really annoying.

Now let’s see how one can start contributing to the Open event frontend project while having no or a little knowledge of web development. In case if you’ve previous knowledge of JavaScript then you can skip the step 1 and move directly to another step which is learning the framework.

(Here all the steps have been explained in reference if you’re switching from Android  to Web development.)

Step 1. Learning the Language – JavaScript

Now that when you’ve already put your feet into the web development it’s high time to get acquainted with the JavaScript. Essentially in the case of Ember which is easy to comprehend, you can though start with learning the framework itself but the executables file are written in JavaScript so to write them you must have basic knowledge of the concepts in the language. Understanding of JavaScript will help in letting know where the language ends and where the framework starts. It will also help in better understanding of the framework. In my opinion, the basic knowledge of JavaScript like the scope of variables, functions, looping, conditional statements, modifying array and dictionaries, ‘this’ keyword etc. helps in writing and understanding the .js files easily. Also, sometimes in JavaScript, an error might not be thrown as an exception while compiling but it may evaluate the program to undefined, knowledge of the language will help in debugging the code.

Step 2. Learning the Framework – Ember

Ember is a JavaScript Framework which works on Model-View-Controller(MVC) approach. The Ember is a battery included framework which generates all the boilerplate code including components, routes. Templates etc.  required for building an application’s frontend. It is very easy to understand and comprehend. In Ember, we can easily define the data models and relationships and ember will automatically guess the correct API endpoints. Apart from this, the documentation of the ember on its website is very much sufficient to start with. One can easily start developing applications after going through the tutorial mentioned on the ember’s website.  

Step 3. Testing

In the case of Android application development to write test we use android libraries like Mockito and Robolectric. Also, testing is a bit more difficult in Android app development because we have to explicitly write the test but it is a lot easier in the case of web development. In the case of Ember, it provides an ease of testing which no other framework and libraries provide. While generating a component or template ember itself generates the test files for them and all we have to do is to change them according to our requirement. Ember generates unit, acceptance and integration tests by making testing easier. So we don’t have to write the test explicitly we only have to modify the test files generated by ember.    

Step 4. Styling

In Android we have colors.xml, styles.xml, drawables, gradients, shapes etc. for styling our application but in the case of Web, we have Cascading Style Sheets (CSS) for styling our application. Simply using pure CSS make design complicated and difficult to understand, so to make it easier we combine a bunch of design elements with a style file and use Syntactically Awesome Style Sheets (Saas) with mixins to do that which makes creating styles a lot easier and more straightforward. So for styling, our web application one should have the knowledge of HTML as well as CSS.

In conclusion, I can say that learning web development requires learning a few things in parallel which includes learning a language, learning a framework, how to perform testing and different styling skills to make an application beautiful. Due to dynamic nature of the JavaScript and the sheer number of packages and components involved, as opposed to the safe environment that Android Studio provides, it can be sometimes really frustrating.  However, once learned the basics, the knowledge and skills can be easily transferred and applied over and over again.    

Continue ReadingStep by step guide for Beginners in Web Development for Open Event Frontend

Adding dynamic segments to a route in Open Event Frontend Project

When we talk about a web application the first thing comes up is how to decide what to display at a given time which in most of the application is decided with the help of the URL. The URL of the application can be set either by loading the application or by writing the URL manually or may be by clicking some link. In our Open Event Frontend project which is written in Ember.js, an incredibly powerful JavaScript framework for creating web applications, the URL is mapped to the router handlers with the helper of router to render the template for the page, to load the data model to display, to navigate within the application or to handle any actions within the page like button clicking etc.

Suppose the user opens the open event application for the very first time what s/he will see a page containing the list of all the events which are going to happen in the near future along with their details like event name, timings, place, tags etc. If the user clicks one of the events from the list, the current page will be redirected to the detailed specific page for that particular event. The behaviour of changing the content of the page which we observed during this process can be explained with the help of the dynamic segments concept. The dynamic segment is a section of the path for a route which changes based on the content of a page.
This post will focus on how we have added dynamic segments to the route in the open event frontend project.

Let’s demonstrate the process of adding the dynamic segments to the route by taking an example of sessions routes where we can see the list of all the accepted, pending, confirmed and rejected sessions along with their details.

To add a dynamic segment, we need to have a route with path which we add to the route definition in app/router.js file

this.route('sessions',  function() {
   this.route('list', { path: '/:sessions_state' });
});

Dynamic segments are made up of a : followed by an identifier. Ember follows the convention of :model-name_id for two reasons. The first reason is that routes know how to fetch the right model by default if we follow the convention. The second is that params is an object, and can only have one value associated with a key.

After defining the path in app/router.js file we need to add template file,  app/templates/events/sessions/list.hbs which contain the markup to display the data which is defined in the file, app/routes/events/sessions/list.js under the model hook of the route in order to display the correct content for the specified option.

Code containing the markup for the page in app/templates/events/sessions/list.hbs file

<div class="sixteen wide column">
  <table class="ui tablet stackable very basic table">
    <thead>
      <tr>
        <th>{{t 'State'}}</th>
        <th>{{t 'Title'}}</th>
        <th>{{t 'Speakers'}}</th>
        <th>{{t 'Track'}}</th>
        <th>{{t 'Short Abstract'}}</th>
        <th>{{t 'Submission Date'}}</th>
        <th>{{t 'Last Modified'}}</th>
        <th>{{t 'Email Sent'}}</th>
        <th></th>
        <th></th>
      </tr>
    </thead>
    <tbody>
      {{#each model as |session|}}
        <tr>
          <td>
            {{#if (eq session.state "confirmed")}}
              <div class="ui green label">{{t 'Confirmed'}}</div>
            {{else}}
              <div class="ui red label">{{t 'Not Confirmed'}}</div>
            {{/if}}
          </td>
          <td>
            {{session.title}}
          </td>
          <td>
            <div class="ui ordered list">
              {{#each session.speakers as |speaker|}}
                <div class="item">{{speaker.name}}</div>
              {{/each}}
            </div>
          </td>
          <td>
            {{session.track}}
          </td>
          <td>
            {{session.shortAbstract}}
          </td>
          <td>
            {{moment-format session.submittedAt 'dddd, DD MMMM YYYY'}}
          </td>
          <td>
            {{moment-format session.modifiedAt 'dddd, DD MMMM YYYY'}}
          </td>
          <td>
            {{session.emailSent}}
          </td>
          <td>
            <div class="ui vertical compact basic buttons">
              {{#ui-popup content=(t 'View') class='ui icon button' position='left center'}}
                <i class="unhide icon"></i>
              {{/ui-popup}}
              {{#ui-popup content=(t 'Edit') class='ui icon button' position='left center'}}
                <i class="edit icon"></i>
              {{/ui-popup}}
              {{#ui-popup content=(t 'Delete') class='ui icon button' position='left center'}}
                <i class="trash outline icon"></i>
              {{/ui-popup}}
              {{#ui-popup content=(t 'Browse edit history') class='ui icon button' position='left center'}}
                <i class="history icon"></i>
              {{/ui-popup}}
            </div>
          </td>
          <td>
            <div class="ui vertical compact basic buttons">
              {{#ui-dropdown class='ui icon bottom right pointing dropdown button'}}
                <i class="green checkmark icon"></i>
                <div class="menu">
                  <div class="item">{{t 'With email'}}</div>
                  <div class="item">{{t 'Without email'}}</div>
                </div>
              {{/ui-dropdown}}
              {{#ui-dropdown class='ui icon bottom right pointing dropdown button'}}
                <i class="red remove icon"></i>
                <div class="menu">
                  <div class="item">{{t 'With email'}}</div>
                  <div class="item">{{t 'Without email'}}</div>
                </div>
              {{/ui-dropdown}}
            </div>
          </td>
        </tr>
      {{/each}}
    </tbody>
  </table>
</div>

 

Code containing the model hook in app/routes/events/sessions/list.js to display the correct content. We access the dynamic portion of the URL using params.

import Ember from 'ember';

const { Route } = Ember;

export default Route.extend({
  titleToken() {
    switch (this.get('params.session_status')) {
      case 'pending':
        return this.l10n.t('Pending');
      case 'accepted':
        return this.l10n.t('Accepted');
      case 'confirmed':
        return this.l10n.t('Confirmed');
      case 'rejected':
        return this.l10n.t('Rejected');
    }
  },
  model(params) {
    this.set('params', params);
    return [{
      title         : 'Test Session 1',
      speakers      : [{ name: 'speaker 1', id: 1, organization: 'fossasia' }, { name: 'speaker 2', id: 1, organization: 'fossasia' }],
      track         : 'sample track',
      shortAbstract : 'Lorem Ipsum is simply dummy text of the printing and typesetting industry.',
      submittedAt   : new Date(),
      modifiedAt    : new Date(),
      emailSent     : 'No',
      state         : 'confirmed'
    },
    {
      title         : 'Test Session 2',
      speakers      : [{ name: 'speaker 3', id: 1, organization: 'fossasia' }, { name: 'speaker 4', id: 1, organization: 'fossasia' }],
      track         : 'sample track',
      shortAbstract : 'Lorem Ipsum is simply dummy text of the printing and typesetting industry.',
      submittedAt   : new Date(),
      modifiedAt    : new Date(),
      emailSent     : 'Yes',
      state         : 'confirmed'
    }];
  }
});

 

After the route is fully configured, we need to start linking it from the templates which mean we need to link it in our parent template, app/templates/events/view/sessions.hbs file using the {{link-to}} helper. The code for the linking looks like this:

    {{#tabbed-navigation isNonPointing=true}}
        {{#link-to 'events.view.sessions.index' class='item'}}
          {{t 'All'}}
        {{/link-to}}
        {{#link-to 'events.view.sessions.list' 'pending' class='item'}}
          {{t 'Pending'}}
        {{/link-to}}
        {{#link-to 'events.view.sessions.list' 'accepted' class='item'}}
          {{t 'Accepted'}}
        {{/link-to}}
        {{#link-to 'events.view.sessions.list' 'confirmed' class='item'}}
          {{t 'Confirmed'}}
        {{/link-to}}
        {{#link-to 'events.view.sessions.list' 'rejected' class='item'}}
          {{t 'Rejected'}}
        {{/link-to}}
      {{/tabbed-navigation}} 

 

The User Interface for the above code looks like this:

Fig. : The page containing all the accepted session

To conclude this, we can say the task of the route is to load the modal to display the data. For example, if we have the route this.route(‘sessions’);, the route might load all of the sessions for the app but we want only the particular type of session so the dynamic segments help to load the particular model and make it easier to load and display the data.

Reference: The link to the complete code is here. For getting more knowledge about dynamic segments please visit this.

Continue ReadingAdding dynamic segments to a route in Open Event Frontend Project

Adding Global Search and Extending Bookmark Views in Open Event Android

When we design an application it is essential that the design and feature set enables the user to find all relevant information she or he is looking for. In the first versions of the Open Event Android App it was difficult to find the Sessions and Speakers related to a certain Track. It was only possible to search for them individually. The user also could not view bookmarks on the Main Page but had to go to a separate tab to view them. These were some capabilities I wanted to add to the app.

In this post I will outline the concepts and advantages of a Global Search and a Home Screen in the app. I took inspiration from the Google I/O 2017 App  that had these features already. And, I am demonstrating how I added a Home Screen which also enabled users to view their bookmarks on the Home Screen itself.

Global Search v/s Local Search

Local Search
Global Search

 

 

 

 

 

 

 

 

 

If we observe clearly in the above images we can see there exists a stark difference in the capabilities of each search.
See how in the Local Search we are just able to search within the Tracks section and not anything else.
This is fixed in the Global Search page which exists along with the new home screen.
As all the results that a user might need are obtained from a single search, it improves the overall user-experience of the app. Also a noticeable feature that was missing in the current iteration of the application was that a user had to go to a separate tab to view his/her bookmarks. It would be better for the app to have a home page detailing all the Event’s/Conference’s details as well as display user bookmarks on the homepage.

New Home

Home screen
Home screen with Bookmarks

 

 

 

 

 

 

 

 

 

Home screen with Bookmarks               
Home screen Demo

 

 

 

 

 

 

 

 

 

The above posted images/gifs indicate the functioning and the UI/UX of the new Homescreen within the app.
Currently I am working to further improve the way the Bookmarks are displayed.
The new home screen provides the user with the event details i.e FOSSASIA 2017 in this case. This would be different for each conference/event and the data is fetched from the open-event-orga server(the first part of the project) if it doesn’t already exist in the JSON files provided in the assets folder of the application. All the event information is being populated by the JSON files provided in the assets folder in the app directory structure.

  • config.json
  • sponsors.json
  • microlocations.json
  • event.json(this stores the information that we see on the home screen)
  • sessions.json
  • speakers.json
  • track.json

All the file names are descriptive enough to denote what do all of them store.I hope that I have put forward why the addition of a New Home with Bookmarks along with the Global Search feature was a neat addition to the app.

Link to PR for this feature : https://github.com/fossasia/open-event-android/pull/1565

Resources

 

 

Continue ReadingAdding Global Search and Extending Bookmark Views in Open Event Android

Using semantic UI components in Open event frontend project

When we talk about reusability in terms of web application framework then Ember has a significant role. It provides a lot of components which can be reused again in different scenarios inside the project. Along with reusability if we bring responsiveness in the picture then Semantic UI has no match. It is an open source HTML/CSS framework having self-explanatory syntax for building the user interface. It helps in building the responsive layouts which are written in the human-friendly HTML. Most of the class names are closer to normal spoken English words which seem to flow naturally and requires less to refer the documentation. For example, if we want to create a checkbox in semantic UI then we can simply use the following piece of code to create a checkbox.

The table is collections of data which are grouped together and arranged in the rows. Semantic UI offers a variety of table layouts for creating the customised table according to the requirement. The table follows responsive behaviour where they automatically stack their layouts according to the mobile devices and using the keyword, ‘tablet stackable’ they can stack themselves for the tablet which helps in avoiding the overflow of UI in the small devices.Semantic UI offers 6 types of “Collections” which are breadcrumb, form, grid, menu, message and table. However, in this article, we’ll keep our focus on two main collections which have been widely used in the entire project Table and Grid.

The grid is used to realign the space in the page. It divides the entire horizontal space into units called “columns” where all columns must specify their width as a proportion of the total available row width. The Semantic UI’s by default theme uses 16 columns means it divides the entire space into 16 indivisible proportionate columns.

Let’s illustrate how these grids and tables have been used in the Open Event Frontend project by taking example two scenarios where the tables and grid both have been used along with the code snippets for better understanding.

Scenario 1: Suppose we are creating a new event and we want to add the list of sessions along with their details for the event which will be visible to the user while navigating through the public page of the event. The page where we will be making changes will be visible only to the person who will be creating the event and authorised to add, remove and edit the sessions.

The page where we can create, modify and see the other details of the sessions look like this.

Fig. 1: Table used in Session in event/event_id/sessions page

As we can see in the above image that the entire data containing the session details of all, pending, accepted, confirmed and rejected sessions are wrapped around a row of 16 columns grid in the page. The table has been put on the grid which helps in managing the flow of the content. Also, after each column there is vertical spacing, added to separate each column, creating vertical rhythm.

To display all the data collection and make it readable, the ‘table’ component of the semantic UI has been used. The table used here belongs to the “ui very basic table” class of semantic UI. Since the table can stack their layout on mobile devices so we have added explicitly, ‘tablet stackable’ responsive behaviour to make the layout stackable on tablet devices as well since our application will be used on the tablets as well.

The code for the above UI looks like this.

<div class="row">
  <div class="sixteen wide column">
    <table class="ui tablet stackable very basic table">
      <thead>
        <tr>
          <th>{{t 'State'}}</th>
          <th>{{t 'Title'}}</th>
          <th>{{t 'Speakers'}}</th>
          <th>{{t 'Track'}}</th>
          <th>{{t 'Short Abstract'}}</th>
          <th>{{t 'Submission Date'}}</th>
          <th>{{t 'Last Modified'}}</th>
          <th>{{t 'Email Sent'}}</th>
          <th></th>
          <th></th>
        </tr>
      </thead>
      <tbody>
        <tr>
          <td>
            <div>
              <div class="ui green label">{{t 'Confirmed'}}</div>
            </div>
          </td>
          <td>Test Session</td>
          <td>
            <div class="ui ordered list">
              <div class="item">Mario Behling</div>
              <div class="item">Test</div>
            </div>
          </td>
          <td>Blockchain</td>
          <td>Get an outlook of the awesome program of the weekend from track organizers and the content team.</td>
          <td>March 18, 2017 <br> 09:30 AM</td>
          <td>March 25, <br> 09:30 PM</td>
          <td>No</td>
          <td>
            <div class="ui vertical compact basic buttons">
              {{#ui-popup content=(t 'View') class='ui icon button'}}
                <i class="unhide icon"></i>
              {{/ui-popup}}
              {{#ui-popup content=(t 'Edit') class='ui icon button'}}
                <i class="edit icon"></i>
              {{/ui-popup}}
              {{#ui-popup content=(t 'Delete') class='ui icon button'}}
                <i class="trash outline icon"></i>
              {{/ui-popup}}
              {{#ui-popup content=(t 'Browse edit history') class='ui icon button'}}
                <i class="history icon"></i>
              {{/ui-popup}}
            </div>
          </td>
          <td>
            <div class="ui vertical compact basic buttons">
              {{#ui-dropdown class='ui icon bottom right pointing dropdown button'}}
                <i class="green checkmark icon"></i>
                <div class="menu">
                  <div class="item">{{t 'With email'}}</div>
                  <div class="item">{{t 'Without email'}}</div>
                </div>
              {{/ui-dropdown}}
              {{#ui-dropdown class='ui icon bottom right pointing dropdown button'}}
                <i class="red remove icon"></i>
                <div class="menu">
                  <div class="item">{{t 'With email'}}</div>
                  <div class="item">{{t 'Without email'}}</div>
                </div>
              {{/ui-dropdown}}
            </div>
          </td>
        </tr>
      </tbody>
    </table>
  </div>

Scenario 2: Suppose we want to purchase a ticket for an event. From the event page under the ticket section we selected the type and number of tickets required, entered the promotional code and clicked on “Order Now” button which redirects us to the page a new page which shows the event details, order summary and a form to be filled by the buyer for purchasing the ticket and making the payment. The order summary contains the details whaveh has been selected by the user before redirecting to the current page. The order summary table looks like this.

Fig. 2: The semantic UI component “table” used in order summary on purchase new ticket page

The table contains the details about the type of ticket, their individual price, their quantity which is chosen by the user and the total amount which needs to be paid.

The semantic UI class the table belongs to is “ui very basic tablet stackable table” which is same as the one we have used in the earlier scenario. The only difference which we have in this and above scenario is that in this one we have added a table header “Order Summary” as well using the semantic UI segment which is used to create the grouping of the content.

The code for the above table looks like this.

<div class="ui segments">
  <div class="ui secondary segment">
    <h3 class="weight-400">{{t 'Order Summary'}}</h3>
  </div>
  <table class="ui very basic tablet stackable table">
    <thead>
      <tr>
        <th class="four wide">{{t 'Ticket Type'}}</th>
        <th class="four wide">{{t 'Price'}}</th>
        <th class="ui aligned two wide">{{t 'Fee'}}</th>
        <th class="one wide">{{t 'Quantity'}}</th>
        <th class="ui aligned two wide">{{t 'Subtotal'}}</th>
      </tr>
    </thead>
    <tbody>
      <tr>
        <td>
          <div class="ui small">
            {{t 'Student/In'}}
          </div>
        </td>
        <td>$ {{number-format 4.0}}</td>
        <td>$ {{number-format 4.0}}</td>
        <td>1</td>
        <td>
          $ {{number-format 4.0}}
        </td>
      </tr>
    </tbody>
    <tfoot class="full-width">
      <tr>
        <th></th>
        <th></th>
        <th></th>
        <th>
          <div class="ui aligned small primary icon">
            {{t 'Order Total'}}:
          </div>
        </th>
        <th colspan="4">
          <div class="ui aligned small primary icon">
            $ {{number-format 4.0}}
          </div>
        </th>
      </tr>
    </tfoot>
  </table>
</div>       


To conclude this I can say that these are only two scenarios which have been taken as examples to explain how open event frontend uses semantic UI components to incorporate responsiveness in the design, but there are a lot more such examples or scenarios where these components have been used with little variation in the code. These components proved to be very handy and useful when it comes to consistency and readability along with responsiveness to the design.

Reference: The link to the code for fig. 1 and fig.2

Continue ReadingUsing semantic UI components in Open event frontend project

Using Ember.js Components in Open Event Frontend

Ember.js is a comprehensive JavaScript framework for building highly ambitious web applications. The basic tenet of Ember.js is convention over configuration which means that it understands that a large part of the code, as well as development process, is common to most of the web applications. Talking about the components which are nothing but the elements whose role remain same with same properties and functions within the entire project. Components allow developers to bundle up HTML elements and styles into reusable custom elements which can be called anywhere within the project.

In Ember, the components consist of two parts: some JavaScript code and an HTMLBars template. The JavaScript component file defines the behaviour and properties of the component. The behaviours of the component are typically defined using actions. The HTMLBars file defines the markup for the component’s UI. By default, the component will be rendered into a ‘div’ tag element, but a different element can be defined if required. A great thing about templates in Ember is that other components can be called inside of a component’s template. To call a component in an Ember app, we must use {{curly-brace-syntax}}. By design, components are completely isolated which means that they are not directly affected by any surrounding CSS or JavaScript.

Let’s demonstrate a basic Ember component in reference to Open Event Frontend Project for displaying the text as a popup. The component will render a simple text view which will display the entire text. The component is designed with the purpose that many times due to unavailability of space we’re unable to show the complete text so such cases the component will compare the available space with the space required by the whole text view to display the text. If in case the available space is not sufficient then the text will be ellipsized and on hovering the text a popup will appear where the complete text can be seen.

Generating the component

The component can be generated using the following command:

$ ember g component smart-overflow

Note: The components name needs to include a hyphen. This is an Ember convention, but it is an important one as it’ll ensure there are no naming collisions with future HTML elements.This will create the required .js and .hbs files needed to define the component, as well as an Ember integration test.

The Component Template

In the app/templates/components/smart-overflow.hbs file we can create some basic markup to display the text when the component is called.

<span> {{yield}} </span>

The {{yield}} is handlebars expressions which will be helpful in rendering the data to display when the component is called.

The JavaScript Code

In the app/components/smart-overflow.js file, we will define the how the component will work when it is called.

import Ember from 'ember';

const { Component } = Ember;

export default Component.extend({
  classNames: ['smart-overflow'],
  didInsertElement() {
    this._super(...arguments);
    var $headerSpan = this.$('span');
    var $header = this.$();
    $header.attr('data-content', $headerSpan.text());
    $header.attr('data-variation', 'tiny');
    while ($headerSpan.outerHeight() > $header.height()) {
      $headerSpan.text((index, text) => {
        return text.replace(/\W*\s(\S)*$/, '...');
      });
      $header.popup({
        position: 'top center'
      });
      this.set('$header', $header);
    }
  },
  willDestroyElement() {
    this._super(...arguments);
    if (this.get('$header')) {
      this.get('$header').popup('destroy');
    }
  }
});

 

In the above piece of code, we have first taken the size of the available space in header variable and then taken the size of the content in header span variable. After that, we’re comparing both the sizes to check if the content is greater than the available space then we are ellipsizing the content and create a popup to display the complete text to produce good user experience.

Passing data to the component

To allow the component to display the data properly, we need to pass it in.

In the app/templates/components/event-card.hbs file we can call the component as many times as desired and pass in relevant data for each attribute.

<div class="ui card {{unless isWide 'event fluid' 'thirteen wide computer ten wide tablet sixteen wide mobile column'}}">
    {{#unless isWide}}
      <a class="image" href="{{href-to 'public' event.identifier}}">
        {{widgets/safe-image src=(if event.large event.large event.placeholderUrl)}}
      </a>
    {{/unless}}
    <a class="main content" href="{{href-to 'public' event.identifier}}">
      {{#smart-overflow class='header'}}
        {{event.name}}
      {{/smart-overflow}}
      <div class="meta">
        <span class="date">
          {{moment-format event.startTime 'ddd, MMM DD HH:mm A'}}
        </span>
      </div>
      {{#smart-overflow class='description'}}
        {{event.shortLocationName}}
      {{/smart-overflow}}
    </a>
    <div class="extra content small text">
      <span class="right floated">
        <i role="button" class="share alternate link icon" {{action shareEvent event}}></i>
      </span>
      <span>
        {{#if hasBlock}}
          {{yield}}
        {{else}}
          {{#each tags as |tag|}}
            <a>{{tag}}</a>
          {{/each}}
        {{/if}}
      </span>
    </div>
  </div>

 

Now if you view the app in the browser at localhost:4200, you will see something like this.

Fig. 1

In the end, we can say that with the components, the code remains much clear and readable. It makes more sense to the developers who happen upon them. The best part about them is their reusability across the application making the development process faster and much more efficient.

Reference: The Complete source for the smart overflow can be found here.

Continue ReadingUsing Ember.js Components in Open Event Frontend

Setting up Codecov in Susper repository hosted on Github

In this blog post, I’ll be discussing how we setup codecov in Susper.

  • What is Codecov and in what projects it is being used in FOSSASIA?

Codecov is a famous code coverage tool. It can be easily integrated with the services like Travis CI. Codecov also provides more features with the services like Docker.

Projects in FOSSASIA like Open Event Orga Server, Loklak search, Open Event Web App uses Codecov. Recently, in the Susper project also the code coverage tool has been configured.

  • How we setup Codecov in our project repository hosted on Github?

The simplest way to setup Codecov in a project repository is by installing codecov.io using the terminal command:

npm install --save-dev codecov.io

Susper works on tech-stack Angular 2 (we have recently upgraded it to Angular v4.1.3) recently. Angular comes with Karma and Jasmine for testing purpose. There are many repositories of FOSSASIA in which Codecov has been configured like this. But with, Angular this case is a little bit tricky. So, using alone:

bash <(curl -s https://codecov.io/bash)

won’t generate code coverage because of the presence of Karma and Jasmine. It will require two packages: istanbul as coverage reporter and jasmine as html reporter. I have discussed them below.

Install these two packages:

  • Karma-coverage-istanbul-reporter
  • npm install karma-coverage-istanbul-reporter --save-dev
  • Karma-jasmine html reporter
  • npm install karma-jasmine-html-reporter --save-dev

    After installing the codecov.io, the package.json will be updated as follows:

  • "devDependencies": {
      "codecov": "^2.2.0",
      "karma-coverage-istanbul-reporter": "^1.3.0",
      "karma-jasmine-html-reporter": "^0.2.2",
    }

    Add a script for testing:

  • "scripts": {
       "test": "ng test --single-run --code-coverage --reporters=coverage-istanbul"
    }

    Now generally, the codecov works better with Travis CI. With the one line bash <(curl -s https://codecov.io/bash) the code coverage can now be easily reported.

Here is a particular example of travis.yml from the project repository of Susper:

script:
 - ng test --single-run --code-coverage --reporters=coverage-istanbul
 - ng lint
 
after_success:
 - bash <(curl -s https://codecov.io/bash)
 - bash ./deploy.sh

Update karma.config.js as well:

Module.exports = function (config) {
  config.set({
    plugins: [
      require('karma-jasmine-html-reporter'),
      require('karma-coverage-istanbul-reporter')
    ],
    preprocessors: {
      'src/app/**/*.js': ['coverage']
    },
    client {
      clearContext: false
    },
    coverageIstanbulReporter: {
      reports: ['html', 'lcovonly'],
      fixWebpackSourcePaths: true
    },
    reporters: config.angularCli && config.angularCli.codeCoverage
      ? ['progress', 'coverage-istanbul'],
      : ['progress', 'kjhtml'],
  })
}

This karma.config.js is an example from the Susper project. Find out more here: https://github.com/fossasia/susper.com/pull/420
This is how we setup codecov in Susper repository. And like this way, it can be set up in other repositories as well which supports Angular 2 or 4 as tech stack.

Continue ReadingSetting up Codecov in Susper repository hosted on Github

Forms and their validation using Semantic UI in Open Event Frontend

A web form acts as a communication bridge that allows a user to communicate with the organisation and vice versa. In the Open Event project, we need forms so users can contact the organisation, to register themselves, to log into the website, to order a ticket or to query for some information. Here are a few things which were kept in mind before we designed forms in the Open Event Frontend Project:

  • The forms were designed on the principle of keeping it simple which means that it should ask only for the relevant information which is required in actual.
  • They contained the relevant fields ordered in a logical way according to their importance.
  • They offered clear error messages instantly to give direct feedback and allow users to make instant corrections.
  • The clear examples were shown in the front of the field.
  • Proper spacing among the fields was maintained to display proper error messages to the respective form fields.
  • The mandatory fields are highlighted using ‘*’ to avoid confusion.
  • Proper colour combinations have been used to inform the user about the progress while filling the form. For eg. red for any ‘error or incomplete’ information while green signifies ‘correct’.
  • Saving the current data in case the user has to go back to make any corrections later.
  • Allowing to toggle through the form using the keyboard.

The above designing principles helped in avoiding the negative user experience while using the forms.

Let’s take a closer look at the form and the form validation in case of purchase a new ticket form on the Orders page in Open Event Front-end application.

Creating a form

Let’s start by writing some HTML for the form:

<form class="ui form" {{action 'submit' on='submit' }}>
  <div class="ui padded segment">
    <h4 class="ui horizontal divider header">
      <i class="ticket icon"></i>
      {{t 'Ticket Buyer'}}
    </h4>
    <div class="field">
      <label class="required" for="firstname">{{t 'First Name'}}</label>
      {{input type='text' name='first_name' value=buyer.firstName}}
    </div>
    <div class="field">
      <label class="required" for="lastname">{{t 'Last Name'}}</label>
      {{input type='text' name='last_name' value=buyer.lastName}}
    </div>
    <div class="field">
      <label class="required" for="email">{{t 'Email'}}</label>
      {{input type='text' name='email' value=buyer.email}}
    </div>
    <h4 class="ui horizontal divider header">
        <i class="ticket icon"></i>
        {{t 'Ticket Holder\'s Information'}}
    </h4>
    {{#each holders as |holder index|}}
      <div class="inline field">
        <i class="user icon"></i>
         <label>{{t 'Ticket Holder '}}{{inc index}}</label>
      </div>
      <div class="field">
        <label class="required" for="firstname">{{t 'First Name'}}</label>
        {{input type='text' name=(concat 'first_name_' index) value=holder.firstName}}
      </div>
      <div class="field">
        <label class="required" for="lastname">{{t 'Last Name'}}</label>
        {{input type='text' name=(concat 'last_name_' index) value=holder.lastName}}
      </div>
      <div class="field">
        <label class="required" for="email">{{t 'Email'}}</label>
        {{input type='text' name=(concat 'email_' index) value=holder.email}}
      </div>
      <div class="field">
        {{ui-checkbox label=(t 'Same as Ticket Buyer') checked=holder.sameAsBuyer onChange=(action 'fillHolderData' holder)}}
      </div>
    {{/each}}
    <p>
      {{t 'By clicking "Pay Now", I acknowledge that I have read and agree with the Open Event terms of services and privacy policy.'}}
    </p>
    <div class="center aligned">
      <button type="submit" class="ui teal submit button">{{t 'Pay Now'}}</button>
    </div>
  </div>
</form>

 

The complete code for the form can be seen here.

In the above code, we have used Semantic UI elements like button, input, label, icon, header and modules like dropdown, checkbox to create the basic structure of the form.

The form is created using the Semantic markup. Along with semantic UI collection “form”, the segment element has been used to create the grouping of similar content like we have a timer and its related description that after 10 minutes the reservation will no longer be held are put together in a segment where they are arranged using semantic UI view “statistic”. Due to the vastness of semantic UI, all the styling has been done using it like fields inlining, button styling, segment background coloring etc.

The form is created using the Semantic markup. Along with semantic UI collection “form”, the segment element has been used to create the grouping of similar content like we have a timer and its related description that after 10 minutes the reservation will no longer be held are put together in a segment where they are arranged using semantic UI view “statistic”. Semantic UI elements like button, input, label, icon, header and modules like dropdown, checkbox have been used. Due to the vastness of semantic UI, all the styling has been done using it like fields inlining, button styling, segment background colouring etc.

The page for the above HTML code looks like this:

Image for the order form

Fig. 1: Order Form to purchase a ticket

The complete form can be seen on this link.

Adding form validations

We can also add validation in HTML format but writing the validation in JavaScript file is considered good practice.

Let’s see how we can add validation to fields in Javascript.

  getValidationRules() {
    let firstNameValidation = {
      rules: [
        {
          type   : 'empty',
          prompt : this.i18n.t('Please enter your first name')
        }
      ]
    };
    let lastNameValidation = {
      rules: [
        {
          type   : 'empty',
          prompt : this.i18n.t('Please enter your last name')
        }
      ]
    };
    let emailValidation = {
      rules: [
        {
          type   : 'empty',
          prompt : this.i18n.t('Please enter your email')
        }
      ]
    };
    let validationRules = {
      inline : true,
      delay  : false,
      on     : 'blur',
      fields : {
        firstName: {
          identifier : 'first_name',
          rules      : [
            {
              type   : 'empty',
              prompt : this.i18n.t('Please enter your first name')
            }
          ]
        },
        lastName: {
          identifier : 'last_name',
          rules      : [
            {
              type   : 'empty',
              prompt : this.i18n.t('Please enter your last name')
            }
          ]
        },
        email: {
          identifier : 'email',
          rules      : [
            {
              type   : 'email',
              prompt : this.i18n.t('Please enter a valid email address')
            }
          ]
        },
        zipCode: {
          identifier : 'zip_code',
          rules   : [
            {
              type   : 'empty',
              prompt : this.i18n.t('Please enter your zip code')
            }
          ]
        } 
    };

Let’s break this up, first, we have an array of validation rules.

  zipCode: {
     identifier : 'zip_code',
        rules   : [
        {
          type   : 'empty',
          prompt : this.i18n.t('Please enter your zip code')
         }
      ]
   }

The first part zipcode is the identifier in Semantic.

The next bit of the identifier, this can match against either id, name or data-validate attributes on the element. We have here picked up the name which we’re using on our labels.

Next bit of the rules, which is an array of objects defining the type of validation, and the message to prompt the user with.

The second part is the settings:

inline : true,

delay : false,

on : 'blur',

This part says we want validation to occur on blur, delayed and to be inline. This gives us the following effect:

Fig. 2: Order Form after validation

To summarise the post, one can say we have seen here how the form to purchase the event ticket has been designed, coded and styled. The complete form can be seen on this link and the complete code can be seen here. The entire form has been designed in such a way to keep it simple, clear and trustworthy without losing the user interaction.

References:

Continue ReadingForms and their validation using Semantic UI in Open Event Frontend

Adding a Notification page using Ember.JS to Open Event Front-end

We have added a notification page for users, where they can have a look at their notifications and manage them separately. Here, we have two buttons for either viewing only the unread or all the notifications. The ‘mark all read’ button, as the name suggests will mark all the notifications as  read and is only present in `/notifications/`.

To create the notification page we have three steps

  • Create parent route for notification
  • Create sub routes for notification/all, notification/index
  • Design the notification page

We’ll be generating parents and sub routes by following three commands

ember generate route notifications
ember generate route notifications/index
ember generate route notifications/all
import Ember from ’ember’;

const { Route } = Ember;

export default Route.extend({
titleToken() {
return this.l10n.t(‘Unread’);
},
templateName: ‘notifications/all’,
model() {
return [{
title       : ‘New Session Proposal for event1 by  user1’,
description : ‘Title of proposal’,
createdAt   : new Date(),
isRead      : false
},
{
title       : ‘New Session Proposal for event3 by  user3’,
description : ‘Title of proposal’,
createdAt   : new Date(),
isRead      : false
},
{
title       : ‘New Session Proposal for event5 by  user5’,
description : ‘Title of proposal’,
createdAt   : new Date(),
isRead      : false
}];
}
});

In the js file we have defined a model, and this model is returned whenever the user navigates to this route ie /notifications.

We have used template name attribute to explicitly define template for this route. As /notifications/ and /notifications/all both have almost the same layout with different data, we have used the same template `notifications/all.hbs` for both of them.

{{#each model as |notification|}}

class=”ui segment {{unless notification.isRead ‘blue’}}”>
div class=”ui grid”>
div class=”row”>
div class=”eight wide column”>
h4 class=”ui header”>{{notification.title}}h4>
p>{{notification.description}}p>
div>
div class=”eight wide column right aligned”>
i class=”checkmark box icon”>i>
div>
div>
div class=”row”>
div class=”ten wide column”>
button class=”ui blue button”>{{t ‘View Session’}}button>
div>
div class=”six wide column right aligned”>
p>{{moment-from-now notification.createdAt}}p>
div>
div>
div>

{{/each}}

In the template we have checked if the notification is read or not and accordingly a blue segment is put.

<div class=“ui segment {{unless notification.isRead ‘blue’}}”>

Continue ReadingAdding a Notification page using Ember.JS to Open Event Front-end

Cross-Browser Issue: Dealing With an UI Problem Arising Due to Floating HTML Elements in Open Event Webapp

A few days back, I came across a rather interesting but hard to debug bug. The weird part was that it presented itself only on particular browsers like Firefox and didn’t exist on other browsers like Chrome.

In Open Event Webapp, we have collapsible session elements on track, room and schedule pages. The uncollapsed element would show you the major details like the title of the session, its type, name and a small thumbnail picture of the speaker. If the user clicks on it, then the element would collapse and more detail would pop up which would include the detailed description of the session and the speaker(s) presenting it.

Now, the problem which was occurring was that the collapsible sessions on the rooms page were behaving erratically. They were collapsing predictably but left behind a huge white space after they wound up on clicking. I have attached some screenshots to better demonstrate the problem. At first, I was confused. Because the same thing worked perfectly on Chrome.

collapsed.png

Collapsed State

uncollapsed.png

On Clicking Again

The actual solution for this problem turned out to be quite short (a one-liner in fact) but it took me a little while to solve it and actually understand what was going on. The solution:-

.room-filter {
 overflow: hidden;
}

Here, room-filter is the class applied to the session element.

Wait? But how did that solved the problem? Read on!!

As I mentioned in the title, the problem arises due to the floating HTML elements. I am just going to give a quick introduction to the float property. In case you want to read more about it, I have provided links at the end of the article which you can go through for a detailed explanation. Float is a CSS positioning property. It tells whether an element would shift to the right or left of its parent container or another floated element while other HTML elements like images, text and inline elements would wrap around it. One popular analogy which is often given is that of a textbook where the text wraps around the images. We can say that the image is floating to the left (or right) while the text wraps around it.

But how is this problem related to the floating elements still remain unclear? Hold on. This is the structure of the session div on the rooms page:

<div class="room-filter" id="{{session_id}}">

<div class="eventtime col-xs-2 col-sm-2 col-md-2">
<!-- Some Content -->
</div>

<div class="room-container">
<div class="left-border col-xs-10 col-sm-10 col-md-10">
<!-- Some Content -->
</div>
</div>

</div>

 

As we can see from the code, we have a session div with two divs inside it. We have applied bootstrap grid classes to them. These bootstrap layout classes actually make the elements float with a specified width (You can check it on the developer console). So, we have two floating div elements inside the parent div. Remember that although the floating elements remain the part of the document, they are taken outside of the normal flow of the page. Since the parent div here contain nothing but the floating elements, its height collapses to zero.

Because of this, Firefox was not able to correctly expand and collapse the session element because it’s actual height was not being computed and was set to zero. Now, if we apply any of the properties which can make the height of the parent element non-zero, we would be able to solve this problem. Chrome somehow managed to escape this issue and worked predictably.

To make the height non-zero, we apply this property:-

.room-filter {
   overflow: hidden;
}

An intuitive reason to explain why this fixes the problem is that when the element is in its default state (overflow: visible), it does not need to calculate its height to display properly. Once we set overflow: hidden, it needs to see whether the max-height or max-width has been surpassed and hence it needs to calculate its dimensions. Once the height is calculated, it is used in layout and the element no longer collapses.

correct.png

Problem solved.

Another alternative solution to solve the problem can be:

.room-filter {
   display: inline-block;
   width: 100%;
}

In case you want to read more about the float property, you can consult these links:

https://css-tricks.com/all-about-floats/

https://www.smashingmagazine.com/2009/10/the-mystery-of-css-float-property/

Continue ReadingCross-Browser Issue: Dealing With an UI Problem Arising Due to Floating HTML Elements in Open Event Webapp