Add check-in restrictions to Open Event Organizer App

The Open Event Organizer Android App has the ability to scan and check-in attendees holding different ticket types for an event. But often there are cases when the attendees holding a particular ticket type need to be check-in restricted. It can be because of reasons such as facilitating entry of premium ticket holders before general ticket holders, or not allowing general ticket holders in a VIP queue.

To facilitate this, we have a field called ‘is-checkin-restricted’ for the entity Ticket. So when it is set to true, any check ins for the holder of that particular ticket type will be restricted. Let’s look at how this was implemented in the Orga App.

This is what we want to achieve:

Even though we needed it to be present in the settings screen, we needed it to be dynamic in nature as the types of tickets are themselves dynamic. This meant that we couldn’t achieve this using the plain old preference themes. We must create a whole new fragment for it and try to make it as similar to a preference theme as possible.

We need the following to create a dynamic tickets fragment:

  1. The fragment itself, which should implement the interfaces:  Progressive, Erroneous  to show progress and error.
  2. An Adapter and a ViewHolder
  3. A ViewModel

The fragment CheckinRestriction is similar to the TicketsFragment for the most part except for the part where we need to restrict check in. In the fragment we are providing a checkbox at the top to restrict check-in for all ticket types. So we need to setup click listeners not just for the checkbox, but for the whole view as well, like this:

binding.restrictAll.setOnClickListener(v -> {
       restrictAll(!binding.restrictAllCheckbox.isChecked());
   });
binding.restrictAllCheckbox.setOnClickListener(v -> {
       //checkbox already checked
       restrictAll(binding.restrictAllCheckbox.isChecked());
   });

The restrictAll() method restricts check-in for all ticket types by updating the view and updating the tickets using the ViewModel:

private void restrictAll(boolean toRestrict) {
   binding.restrictAllCheckbox.setChecked(toRestrict);
   ticketSettingsViewModel.updateAllTickets(toRestrict);
   ticketsAdapter.notifyDataSetChanged();
}

It’s also important to note here how we are handling the clicks in the ViewHolder for each ticket item:

public void bind(Ticket ticket) {
   binding.setTicket(ticket);
   View.OnClickListener listener = v -> {
       ticket.isCheckinRestricted = ticket.isCheckinRestricted == null || !ticket.isCheckinRestricted;
       binding.ticketCheckbox.setChecked(ticket.isCheckinRestricted);
       updateTicketAction.push(ticket);
       binding.executePendingBindings();
   };
   itemView.setOnClickListener(listener);
   binding.ticketCheckbox.setOnClickListener(listener);
}

A method that is run each time in order to check if all the tickets are restricted and then accordingly tick the ‘restrict-all’ box.

private void checkRestrictAll() {
   if (ticketSettingsViewModel.getTickets() == null) {
       return;
   }
    boolean restrictAll = true;
    for (Ticket ticket : ticketSettingsViewModel.getTickets().getValue()) {
       if (ticket.isCheckinRestricted == null || !ticket.isCheckinRestricted) {
           restrictAll = false;
           break;
       }
   }
   binding.restrictAllCheckbox.setChecked(restrictAll);
}

This is all of the code we need apart from the boilerplate code in order to successfully build a check-in-restrictions fragment.

Read more of the code here

Resources:

Continue Reading

Using Android Architecture Components in Organizer App

In the Open Event Organizer Android App there is an issue with the Memory leaks, Data persistence on configuration changes and difficulty in managing the Activity lifecycle. So as to deal with these issues we have implemented Android Architecture Components.

The first step towards moving on with AAC’s was the conversion of a presenter class to a ViewModel class and then implementing LiveData in the refactored class.

LiveData

It is an Observable data holder. It notifies the observers whenever there is change in the data so that the UI can be updated.

Livedata is also bound to the lifecycle which means that it will be observing changes only when the activity is in started or resumed state and hence there is no chance of memory leaks or null pointer exceptions.

ViewModel

The ViewModel class is designed to hold and manage UI-related data in a life-cycle conscious way. This allows data to survive configuration changes such as screen rotations.

In the following I’ll be explaining how the LoginViewModel class was made in the Orga App.

Steps

  • Creating one’s own custom ViewModelFactory. This is done so as to follow the Single Responsibility Principle. This custom class extends the ViewModelProvider.Factory and handles the creation of View Models. Adding this class also ensures that a Constructor can also get injected in the View Model class.
@Singleton
public class OrgaViewModelFactory implements ViewModelProvider.Factory {

  private final Map<Class<? extends ViewModel>, Provider<ViewModel>> creators;

  @Inject
  public OrgaViewModelFactory(Map<Class<? extends ViewModel>, Provider<ViewModel>> creators) {
      this.creators = creators;
  }

  @NonNull
  @Override
  @SuppressWarnings({“unchecked”, “PMD.AvoidThrowingRawExceptionTypes”, “PMD.AvoidCatchingGenericException”})
  public <T extends ViewModel> T create(@NonNull Class<T> modelClass) {
      Provider<? extends ViewModel> creator = creators.get(modelClass);
      if (creator == null) {
          for (Map.Entry<Class<? extends ViewModel>, Provider<ViewModel>> entry : creators.entrySet()) {
              if (modelClass.isAssignableFrom(entry.getKey())) {
                  creator = entry.getValue();
                  break;
              }
          }
      }
      if (creator == null) {
          throw new IllegalArgumentException(“unknown model class “ + modelClass);
      }
      try {
          return (T) creator.get();
      } catch (Exception e) {
          throw new RuntimeException(e);
      }
  }
}
  • Injecting this custom ViewModelFactory into the ViewModelModule. Adding the method bindLoginViewModel with the LoginViewModel as its parameter. Always add any new ViewModel class into the ViewModelModule otherwise it might show DaggerAppComponent errors.
@Module
public abstract class ViewModelModule {

  @Binds
  @IntoMap
  @ViewModelKey(LoginViewModel.class)
  public abstract ViewModel bindLoginViewModel(LoginViewModel loginViewModel);

  @Binds
  public abstract ViewModelProvider.Factory bindViewModelFactory(OrgaViewModelFactory factory);

}
  1. Refactoring the LoginPresenter to LoginViewModel class and extending it to ViewModel.
  2. In the fragment class injecting the ViewModelProviderFactory.
@Inject
ViewModelProvider.Factory viewModelFactory;
  • Pass this parameter in the ViewModelProviders.of( ) method as follows:
loginFragmentViewModel = ViewModelProviders.of(this, viewModelFactory).get(LoginViewModel.class);
  • Now the only task in hand is the use of LiveData in the ViewModels and observing the LiveData from the Fragments. In the following LiveData has been applied to observe the state of Progress Bar. When the login button is pressed, the value of MutableLiveData<Boolean> progress is set to true.
public void login() {
  compositeDisposable.add(loginModel.login(login)
      .doOnSubscribe(disposable -> progress.setValue(true))
      .doFinally(() -> progress.setValue(false))
      .subscribe(() -> isLoggedIn.setValue(true),
          throwable -> error.setValue(ErrorUtils.getMessage(throwable))));
}

 

  • This change in state is observed by the following code in the fragment class:
loginFragmentViewModel.getProgress().observe(this, this::showProgress);

On observing this, the showProgress is called which handles the visibility if the progress bar. Currently as the progress value was set to True, the progress bar is visible till the processing goes on.

  • Once the login takes place the progress of the LoginViewModel is set to false and the progress bar gets hidden, again which gets observed in the fragment class.

References:

https://android.jlelse.eu/android-architecture-components-livedata-1ce4ab3c0466

Continue Reading

Offline support for Open Event Android with ROOM

So until now we were fetching data from the server and directly displaying it to the user in the Open Event Android app. There are several problems in this approach if the user changes the fragment and then returns to the same fragment he will have to fetch the data again, valuable network gets wasted. There is also no offline support. So we decided to introduce a local database in the app. ROOM was without a doubt our first choice

What is ROOM?

According to the official documentation,

The Room persistence library provides an abstraction layer over SQLite to allow fluent database access while harnessing the full power of SQLite.

The library helps you create a cache of your app’s data on a device that’s running your app. This cache, which serves as your app’s single source of truth, allows users to view a consistent copy of key information within your app, regardless of whether users have an internet connection.

Let’s get started

Integration of the ROOM database majorly consists of 3 steps

1 Create an entity

2 Create a DAO

3 Create a Database

That’s it, you are done !

Create the entity

There are just 2 requirements in order to make a model an entity

First use @Entity annotation on the model class to make it an entity. Secondly you need at least one field with @PrimaryKey annotation.

This entity class represents a table in database and all its fields are the columns of the table.

@Type("event")
@JsonNaming(PropertyNamingStrategy.KebabCaseStrategy::class)
@Entity
data class Event(
@Id(LongIdHandler::class)
@PrimaryKey
val id: Long,
val name: String,
val identifier: String,
val startsAt: String)

Create DAO

Data Access Object or DAO for short are used to tell the database how to to put the data.

We can use the following annotations to perform simple SQL queries in ROOM

@Insert, @Update, @Delete for proper actions: inserting, updating and deleting records

@Query for creating queries — we can make select from the database

@Dao
interface EventDao {
@Insert(onConflict = REPLACE)
fun insertEvents(events: List<Event>)

@Insert(onConflict = REPLACE)
fun insertEvent(event: Event)

@Query("DELETE FROM Event")
fun deleteAll()

@Query("SELECT * from Event ORDER BY startsAt DESC")
fun getAllEvents(): Flowable<List<Event>>

@Query("SELECT * from Event WHERE id = :id")
fun getEvent(id: Long): Flowable<Event>
}

Create the Database

We need to create a public abstract class that extends RoomDatabase

After that annotate the class to be a Room database, declare the entities that belong in the database and set the version number. Listing the entities will create tables in the database.

Define the DAOs that work with the database. Make the database a singleton to prevent having multiple instances of the database opened at the same time. A lot has been said let’s have a look at the code now.

@Database(entities = [Event::class, User::class], version = 1)
abstract class OpenEventDatabase : RoomDatabase() {

abstract fun eventDao(): EventDao

abstract fun userDao(): UserDao
}
Room.databaseBuilder(androidApplication(),
OpenEventDatabase::class.java, "open_event_database")
.fallbackToDestructiveMigration()
.build()

The important thing here is that all operations must be done in the background thread. You can do it by using AsyncTask, Handler, RxJava or anything else.

Resources

  1. Room Official Documentation : https://developer.android.com/topic/libraries/architecture/room
  2. Google Code Lab :https://codelabs.developers.google.com/codelabs/android-room-with-a-view/#0
Continue Reading

Speaker details in the Open Event Orga App

The Open Event Organiser Android App is currently released in the Alpha phase on the Google Play Store here. This blog post explains how the speaker details feature has been implemented in the app.

Model

The model for Speaker is pretty straightforward. It includes the personal details of the speaker such as name, biography, country, social media profiles, designation etc. Apart from these details, every instance of speaker is associated with a single event. A speaker will also have multiple instances of sessions. Full implementation of the speaker’s model can be found here.

Network Call

We use Retrofit in order to make the network call and Jackson Factory to deserialize the data received from the call into an instance of the speaker model. The following endpoint provides us with the required information:

https://open-event-api-dev.herokuapp.com/speakers/{speaker_id}

Repository

In any typical android application using both network calls and data persistence, there is a need of a repository class to handle them. Speaker Repository handles the network call to the API in order to fetch the speaker details. It then saves the data returned by the api into the database asynchronously. It also ensures that we send the latest data that we have stored in the database to the view model. Given below is the full implementation for reference:

@Override
    public Observable<Speaker> getSpeaker(long speakerId, boolean reload) {
        Observable<Speaker> diskObservable = Observable.defer(() ->
            repository
                .getItems(Speaker.class, Speaker_Table.id.eq(speakerId)).take(1)
        );

        Observable<Speaker> networkObservable = Observable.defer(() ->
            speakerApi.getSpeaker(speakerId)
                .doOnNext(speaker -> repository
                    .save(Speaker.class, speaker)
                    .subscribe()));

        return repository
            .observableOf(Speaker.class)
            .reload(reload)
            .withDiskObservable(diskObservable)
            .withNetworkObservable(networkObservable)
            .build();
    }

ViewModel

The View Model is responsible for fetching the necessary details from the repository and displaying it in the view. It handles all the view binding logic. The most important method in the SpeakerDetailsViewModel is the getSpeakers method. It accepts a speaker id from the fragment, queries the repository for the details of the speaker and returns it back to the fragment in the form of a LiveData. Below is the full implementation of the getSpeakers method:

protected LiveData<Speaker> getSpeaker(long speakerId, boolean reload) {
        if (speakerLiveData.getValue() != null && !reload)
            return speakerLiveData;

        compositeDisposable.add(speakerRepository.getSpeaker(speakerId, reload)
            .compose(dispose(compositeDisposable))
            .doOnSubscribe(disposable -> progress.setValue(true))
            .doFinally(() -> progress.setValue(false))
            .doOnNext(speaker -> speakerLiveData.setValue(speaker))
            .flatMap(speaker -> sessionRepository.getSessionsUnderSpeaker(speakerId, reload))
            .toList()
            .subscribe(sessionList -> sessionLiveData.setValue(sessionList),
                throwable -> error.setValue(ErrorUtils.getMessage(throwable))));

        return speakerLiveData;
    }

We add the disposable to a composite disposable and dispose it in the onCleared method of the View Model. The full implementation of the View Model can be found here.

Fragment

The SpeakerDetailsFragment acts as the view and is responsible for everything the user sees on the screen. It accepts the id of the speaker whose details are to be displayed in the constructor. When an instance of the fragment is created it sets up it’s view model and inflates it’s layout using the Data binding framework.

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
                             Bundle savedInstanceState) {
   context = getContext();
   binding = DataBindingUtil.inflate(inflater, R.layout.speaker_details_fragment, container, false);
   speakerDetailsViewModel = ViewModelProviders.of(this, viewModelFactory).get(SpeakerDetailsViewModel.class);
   speakerId = getArguments().getLong(SPEAKER_ID);

   AppCompatActivity activity = ((AppCompatActivity) getActivity());
   activity.setSupportActionBar(binding.toolbar);

   ActionBar actionBar = activity.getSupportActionBar();
   if (actionBar != null) {
       actionBar.setHomeButtonEnabled(true);
       actionBar.setDisplayHomeAsUpEnabled(true);
   }

   return binding.getRoot();
}

In the onStart method of the fragment we load the data by calling the getSpeaker method in the view model. Then we set up the RecyclerView for the sessions associated with the speaker. Lastly we also set up the refresh listener which can be used by the user to refresh the data.

@Override
public void onStart() {
   super.onStart();

   speakerDetailsViewModel.getProgress().observe(this,this::showProgress);
   speakerDetailsViewModel.getError().observe(this, this::showError);
   loadSpeaker(false);

   setupRecyclerView();
   setupRefreshListener();
}

Once the data is returned we simply set it on the layout by calling setSpeaker on the binding.

@Override
public void showResult(Speaker item) {
   binding.setSpeaker(item);
}

The full implementation of the SpeakerDetailsFragment can be found here.

Sessions Adapter

The SessionsAdapter is responsible for handling the RecyclerView of sessions associated with the speaker. The most important method in the adapter is the setSessions method. It accepts a list of sessions and shows it as the contents of the recycler view. It uses the DiffUtil.calculateDiff method to create a DiffResult which will be used by the adapter to figure out where to insert items.

protected void setSessions(final List<Session> newSessions) {
        if (sessions == null) {
            sessions = newSessions;
            notifyItemRangeInserted(0, newSessions.size());
        } else {
            DiffUtil.DiffResult result = DiffUtil.calculateDiff(new DiffUtil.Callback() {
                @Override
                public int getOldListSize() {
                    return sessions.size();
                }

                @Override
                public int getNewListSize() {
                    return newSessions.size();
                }

                @Override
                public boolean areItemsTheSame(int oldItemPosition, int newItemPosition) {
                    return sessions.get(oldItemPosition).getId()
                        .equals(newSessions.get(newItemPosition).getId());
                }

                @Override
                public boolean areContentsTheSame(int oldItemPosition, int newItemPosition) {
                    return sessions.get(oldItemPosition).equals(newSessions.get(newItemPosition));
                }
            });
            sessions = newSessions;
            result.dispatchUpdatesTo(this);
        }
    }

The full implementation of the Adapter can be found here.

References

Continue Reading
Close Menu