Improving Loklak apps site

In this blog I will be describing some of the recent improvements made to the Loklak apps site. A new utility script has been added to automatically update the loklak app wall after a new app has been made. Invalid app query in app details page has been handled gracefully.

A proper message is shown when a user enters an invalid app name in the url of the details page. Tests has been added for details page.

Developing updatewall script

This is a small utility script to update Loklak wall in order to expose a newly created app or update an existing app. Before moving into the working of this script let us discuss how Loklak apps site tracks all the apps and their details. In the root of the project there is a file names apps.json. This file contains an aggregation of all the app.json files present in the individual apps. Now when the site is loaded, index.html loads the Javascript code present in app_list.js. This app_list.js file makes an ajax call to root apps.json files, loads all the app details in a list and attaches this list to the AngularJS scope variable. After this the app wall consisting of various app details is rendered using html. So whenever a new app is created, in order to expose the app on the wall, the developer needs to copy the contents of the application’s app.json and paste it in the root apps.json file. This is quite tedious on the part of the developer as for making a new app he will first have to know how the site works which is not all directly related to his development work. Next, whenever he updates the app.json of his app, he needs to again update apps.json file with the new data.

This newly added script (updatewall) automates this entire process. After creating a new app all that the developer needs to do is run this script from within his app directory and the app wall will be updated automatically.

Now, let us move into the working of this script. The basic workflow of the updatewall script can be described as follows. The script loads the json data present in the app.json file of the app under consideration. Next it loads the json data present in the root apps.json file.

if __name__ == '__main__':

    #open file containg json object
    json_list_file = open(PATH_TO_ROOT_JSON, 'r')

    #load json object
    json_list = json.load(json_list_file,  object_pairs_hook=OrderedDict)
    json_list_file.close()

    app_json_file = open(PATH_TO_APP_JSON, 'r')
    app_json = json.load(app_json_file,  object_pairs_hook=OrderedDict)
    app_json_file.close()

    #method to update Loklak app wall
    expose_app(json_list, app_json)

When we are loading the json data we are using object_pairs_hook in order to load the data into an OrderedDict rather than a normal python dictionary. We are doing this so that the order of the dictionary items are maintained. Once the data is loaded we invoke the expose method.

def expose_app(json_list, app_json):
    #if app is already present in list then fetch that app
    app = getAppIfPesent(json_list, app_json)

    #if app is not present then add a new entry
    if app == None:
        json_list['apps'].append(app_json)
        update_list_file(json_list)
        print colors.BOLD + colors.OKGREEN + 'App exposed on app wall' + colors.ENDC

    #else update the existing app entry
    else:
        for key in app_json:
            app[key] = app_json[key]
        update_list_file(json_list)
        print colors.BOLD + colors.OKGREEN + 'App updated on app wall' + colors.ENDC

The apps.json file contain a key called apps. This value of this key is a list of json objects, each object being the json data of an individual app’s app.json file. In the above function we iterate over all the json objects present in the list. If we are unable to find a json object whose name value is same as that of the newly created app then we simply append the new app’s app.json object to that list. However if we find an object containing the same name value as that of the newly created app, then we simply update its properties. In short, if the app is a new one, its data gets added to apps.json otherwise the corresponding app data is updated.

Handling invalid app names in the URL of details page

The url of the app details page takes the app name as parameter. If any user wants to see the store listing of an app then he has to use the following url.

https://apps.loklak.org/details.html?q=<app_name>

Here app name is a url parameter used to load the store listing information. Now if anyone enters an invalid app name, that is an app which does not exists, then a proper error message has to be shown to the user. This can be done by checking whether the given app name is present in the root apps.json file or not. If not present if simply set a flag so that the error message can be conditionally rendered.

$scope.getSelectedApp = function() {
        for (var i = 0; i < $scope.apps.length; i++) {
            if ($scope.apps[i].name === $scope.appName) {
                $scope.selectedApp = $scope.apps[i];
                $scope.found = true;
                $("nav").show();
                break;
            }
        }
        if ($scope.found == false) {
            $scope.notFound = true;
        }
    }

In the above snippet if the app is not found then we set notFound to true. This causes the error message to appear on the page.

<div ng-if="notFound" class="not-found">
        <span class="brand-and-image">
          <img src="images/loklak_icon.png">
          <span class="loklak-brand"> <span class="loklak-header">
            loklak </span> <span>apps</span>
          </span>
        </span>
        <span class="error-404">
          Error: Requested app not found
        </span>
        <span class="go-back">
          <a href="/"> Go Back to Home Page >> </a>
        </span>
      </div>

The code renders the error message if notFound is set to true.

Writing tests for store listing page

Almost the entire content of the store listing is loaded dynamically by Javascript logic. So it is very important to write tests for store listing page. Protractor framework has been used to write automated browser test. The tests make sure that for a given app, the content of the middle section is loaded correctly.

it("should have basic information", function() {
    expect(element(by.css(".app-name")).getText()).toEqual("MultiLinePlotter");
    expect(element(by.css(".app-headline")).getText()).toEqual("App to plot tweet aggregations and statistics");
    expect(element(by.css(".author")).getText()).toEqual("by Deepjyoti Mondal");
    expect(element(by.css(".short-desc")).getText()).toEqual("An applicaton to visually compare tweet statistics");
  });

The above tests make sure that the top section is loaded properly. Next we check that getting started section and app use section are not empty.

it("main content should not be empty", function() {
    expect(element(by.css(".get-started-md")).getText()).not.toBe("");
    expect(element(by.css(".app-use-md")).getText()).not.toBe("");
  });

Apart from these, two more tests are performed to check the behaviour of the side bar menu items on click event and the functionality of the Try now button.

Future roadmap

There is still a lot of scope for the site’s improvement and enhancement. Some of the features which can be implemented next are given below.

  • Add more tests to make the site stable and add tests to travis build.
  • Make the apps independent. Work on this has already been started and can be viewed here – issue, PR
  • Optimise the site for mobile using services workers and caching (making a progressive web app).
  • Add a splash screen and home screen icon for mobile.

Important resources

Continue ReadingImproving Loklak apps site

Using Protractor for UI Tests in Angular JS for Loklak Apps Site

Loklak apps site’s home page and app details page have sections where data is dynamically loaded from external javascript and json files. Data is fetched from json files using angular js, processed and then rendered to the corresponding views by controllers. Any erroneous modification to the controller functions might cause discrepancies in the frontend. Since Loklak apps is a frontend project, any bug in the home page or details page will lead to poor UI/UX. How do we deal with this? One way is to write unit tests for the various controller functions and check their behaviours. Now how do we test the behaviours of the site. Most of the controller functions render something on the view. One thing we can do is simulate the various browser actions and test site against known, accepted behaviours with Protractor.

What is Protractor

Protractor is end to end test framework for Angular and AngularJS apps. It runs tests against our app running in browser as if a real user is interacting with our browser. It uses browser specific drivers to interact with our web application as any user would.

Using Protractor to write tests for Loklak apps site

First we need to install Protractor and its dependencies. Let us begin by creating an empty json file in the project directory using the following command.

echo {} > package.json

Next we will have to install Protractor.

The above command installs protractor and webdriver-manager. After this we need to get the necessary binaries to set up our selenium server. This can be done using the following.

./node_modules/protractor/bin/webdriver-manager update
./node_modules/protractor/bin/webdriver-manager start

Let us tidy up things a bit. We will include these commands in package.json file under scripts section so that we can shorten our commands.

Given below is the current state of package.json

{
    "scripts": {
        "start": "./node_modules/http-server/bin/http-server",
        "update-driver": "./node_modules/protractor/bin/webdriver-manager update",
        "start-driver": "./node_modules/protractor/bin/webdriver-manager start",
        "test": "./node_modules/protractor/bin/protractor conf.js"
    },
    "dependencies": {
        "http-server": "^0.10.0",
        "protractor": "^5.1.2"
    }
}

The package.json file currently holds our dependencies and scripts. It contains command for starting development server, updating webdriver and starting webdriver (mentioned just before this) and command to run test.

Next we need to include a configuration file for protractor. The configuration file should contain the test framework to be used, the address at which selenium is running and path to specs file.

// conf.js
exports.config = {
    framework: "jasmine",
    seleniumAddress: "http://localhost:4444/wd/hub",
    specs: ["tests/home-spec.js"]
};

We have set the framework as jasmine and selenium address as http://localhost:4444/wd/hub. Next we need to define our actual file. But before writing tests we need to find out what are the things that we need to test. We will mostly be testing dynamic content loaded by Javascript files. Let us define a spec. A spec is a collection of tests. We will start by testing the category name. Initially when the page loads it should be equal to All apps. Next we test the top right hand side menu which is loaded by javascript using topmenu.json file.

it("should have a category name", function() {
    expect(element(by.id("categoryName")).getText()).toEqual("All apps");
  });

  it("should have top menu", function() {
    let list = element.all(by.css(".topmenu li a"));
    expect(list.count()).toBe(5);
  });

As mentioned earlier, we are using jasmine framework for writing our specs. In the above code snippet ‘it’ describes a particular test. It takes a test description and a callback function thereby providing a very efficient way to document our tests white write the test code itself. In the first test we use expect function to check whether the category name is equal to All apps or not. Here we select the div containing the category name by its id.

Next we write a test for top menu. There should be five menu options in total for the top menu. We select all the list items that are supposed to contain the top menu items and check whether the number of such items are five or not using expect function. As it can be seen from the snippet, the process of selecting a node is almost similar to that of Jquery library.

Next we test the left hand side category list. This list is loaded by AngularJS controller from apps,json file. We should make sure the list is loaded properly and all the options are present.

it("should have a category list", function() {
    let categoryIds = ["All", "Scraper", "Search", "Visualizer", "LoklakLibraries", "InternetOfThings", "Misc"];
    let categoryNames = ["All", "Scraper", "Search", "Visualizer", "Loklak Libraries", "Internet Of Things", "Misc"];

    expect(element(by.css("#catTitle")).getText()).toBe("Categories");

    let categoryList = element.all(by.css(".category-main"));
    expect(categoryList.count()).toBe(7);

    categoryIds.forEach(function(id, index) {
      element(by.css("#" + id)).isPresent().then(function(present) {
        expect(present).toBe(true);
      });

      element(by.css("#" + id)).getText().then(function(text) {
        expect(text).toBe(categoryNames[index]);
      });
    });
  });

At first we maintain two lists of category id and category names. We begin by confirming that Category title is equal to Categories. Next we get the list of categories and iterate over them, For each category we check whether the corresponding id is present in the DOM or not. After confirming this, we match the names of the categories with the expected names. Elements.all function allows us to get a list of selected nodes.

Finally we check the click functionality of the left side menu. Expected behaviour is, on clicking a menu item, the category name should get replaced with the selected category name. For this we need to simulate the click event. Protractor allows us to do it very easily using click function.

it("category list should respond to click", function() {
    let categoryIds = ["All", "Scraper", "Search", "Visualizer", "LoklakLibraries", "InternetOfThings", "Misc"];
    let categoryNames = ["All apps", "Scraper", "Search", "Visualizer", "Loklak Libraries", "Internet Of Things", "Misc"];

    categoryIds.forEach(function(id, index) {
      element(by.id(categoryIds[index])).click().then(function() {
        browser.getCurrentUrl().then(function(url) {
          expect(url).toBe("http://127.0.0.1:8080/#/" + categoryIds[index]);
        });
        element(by.id("categoryName")).getText().then(function(text) {
          expect(text).toBe(categoryNames[index]);
        });
      });
    });
  });



Once again we maintain two lists, category id and category names. We obtain the present list of categories and iterate over them. For each category link we simulate a click event. For each click event we check two values. We check the new browser URL which should now contain the category id. Next we check the value of category name. It should be equal to the category selected.
FInally after all the tests are over we get the final report on our terminal.
In order to run the tests, use the following command.

npm test

This will start executing the tests.

Important resources

Continue ReadingUsing Protractor for UI Tests in Angular JS for Loklak Apps Site

Using Multiple Languages in Giggity app

Giggity app is used for conferences around the world. It becomes essential that it provides support for native languages as the users may not understand the terminologies written primarily in English from different countries. In this blog, I describe how to add a resource for another language in your app with the example of Giggity.  I recently worked on the addition of French translation in the app. We look at the addition of German in the app.

You can specify resources tailored to the culture of the people who use your app. You can provide any resource type that is appropriate for the language and culture of your users. For example, the following screenshot shows an app displaying string and drawable resources in the device’s default (en_US) locale and the German (de_DE) locale.

It is good practice to use the Android resource framework to separate the localized aspects of your application as much as possible from the core Java functionality:

  • You can put most or all of the contents of your application’s user interface into resource files, as described in this document and in Providing Resources.
  • The behaviour of the user interface, on the other hand, is driven by your Java code. For example, if users input data that needs to be formatted or sorted differently depending on locale, then you would use Java to handle the data programmatically. This document does not cover how to localize your Java code.

Whenever the application runs in a locale for which you have not provided locale-specific text, Android will load the default strings from res/values/strings.xml. If this default file is absent, or if it is missing a string that your application needs, then your application will not run and will show an error. Here is an example of default strings in the app.

<!-- Menu -->
<string name="settings">Settings</string>
<string name="change_day">Change day</string>
<string name="show_hidden">Show hidden items</string>
<string name="timetable">Timetable</string>
<string name="tracks">Tracks</string>
<string name="now_next">Now and next</string>
<string name="my_events">My events</string>
<string name="search">Search</string>

An application can specify many res/<qualifiers>/ directories, each with different qualifiers. To create an alternative resource for a different locale, you use a qualifier that specifies a language or a language-region combination. (The name of a resource directory must conform to the naming scheme described in Providing Alternative Resources, or else it will not compile.) You can specify resources tailored to the culture of the people who use your app. You can provide any resource type that is appropriate for the language and culture of your users. For example, the following screenshot shows an app displaying string and drawable resources in the device’s default (en_US) locale and the German (de_DE) locale.

<!-- Menu -->
<string name="settings">Einstellungen</string>
<string name="change_day">Tag ändern</string>
<string name="timetable">Zeitplan</string>
<string name="tracks">Tracks</string>
<string name="now_next">Jetzt und gleich</string>
<string name="my_events">Meine Veranstaltungen</string>
<string name="search">Suche</string>

Then you can use it in the app like this anywhere you need to use the string. This is an example of putting the options menu in the toolbar in Giggity app.

@Override
public boolean onCreateOptionsMenu(Menu menu) {
   super.onCreateOptionsMenu(menu);

   menu.add(Menu.NONE, 1, 5, R.string.settings)
           .setShortcut('0', 's')
           .setIcon(R.drawable.ic_settings_white_24dp)
           .setShowAsAction(MenuItem.SHOW_AS_ACTION_ALWAYS);
   menu.add(Menu.NONE, 2, 7, R.string.add_dialog)
           .setShortcut('0', 'a')
           .setIcon(R.drawable.ic_add_white_24dp)
           .setShowAsAction(MenuItem.SHOW_AS_ACTION_ALWAYS);

   return true;
}

References:

Continue ReadingUsing Multiple Languages in Giggity app

Timer Option in Phimpme Android’s Camera

The Phimpme Android application comes in with all the options like clicking a picture, editing them and sharing it with the world using many many connected social media accounts. Not only this, it features a fully functional camera with lots of different functionality which a user wants in their day to day life. One such feature is the Timer option in Phimpme. In Phimpme, the user can go to the camera settings to enable or disable the Timer options and click their photos after setting the timer for a particular duration. After setting the timer and pressing the capture photo button, it also displays a ticker at the UI of the camera to notify the user the amount of time after which the photo will be clicked.

In this tutorial, I will be explaining how we have achieved this feature in the Phimpme application.

Step 1

The first thing we need to do is to display the options to the user in camera settings to enable/disable the timer and to select the specific amount of time for the delay in the capture. To do this we have made use of the pop-up view in which we have programmatically added all the timer values to be displayed to the user using the code snippet below:

final String[] timer_values = getResources().getStringArray(R.array.preference_timer_values);
  String[] timer_entries = getResources().getStringArray(R.array.preference_timer_entries);
String timer_value = sharedPreferences.getString(PreferenceKeys.getTimerPreferenceKey(), "0");
addArrayOptionsToPopup(Arrays.asList(timer_entries), getResources().getString(R.string.preference_timer), true, timer_index, false)

What the function addArrayOptionsToPopup does is that it adds the following arrays to the linear layout of the pop-up view programmatically.

Step 2

After displaying the timer values to the user, we need to think about the functionality of the camera if the timer is enabled. When the user presses the click picture button we check the condition whether the timer is enabled or not. If it is enabled, we make the application to wait for a specific amount of time before clicking the photo. This can be done using the CountDownTimer class which is provided by Android.

new CountDownTimer(timerDelay, 1000) {
   public void onTick(long millisUntilFinished) {
          //Called after each second
       }
       public void onFinish() {
         //Called after timer delay
       }
   }.start();

What the above piece of code does is to wait for the specific amount of time as specified by the timer delay. Suppose the user selects the option to wait for 5 seconds then we set the timerDelay to be 5000, then the above code calls the onTick method after each second where we update the user that how much time is remaining and on the onFinish method we call the takePicture method to capture the image using the following line of code below.

mCamera.takePicture(null, null, mPicture);

This is how we have implemented the option of Timer in the Phimpme Android application. To get the full source code of the Camera, please check out the Phimpme Android GitHub repository listed in the resources section below.

Resources

  1. Android Developer Guide : CountDown Timer – https://developer.android.com/reference/android/os/CountDownTimer.html
  2. StackOverflow – Implementing Timer in Camera – https://stackoverflow.com/questions/35355320/camera-application-timer-implementaion-issue
  3. GitHub – Phimpme Android Repository – https://github.com/fossasia/phimpme-android/
  4. GitHub – Open Camera Source Code – https://github.com/almalence/OpenCamera

 

Continue ReadingTimer Option in Phimpme Android’s Camera

Marker Click Management in Android Google Map API Version 2

We could display a marker on Google map to point to a particular location. Although it is a simple task sometimes we need to customise it a bit more. Recently I customised marker displayed in Connfa app displaying the location of the sessions on the map loaded from Open Event format. In this blog manipulation related to map marker is explored.

Markers indicate single locations on the map. You can customize your markers by changing the default colour, or replace the marker icon with a custom image. Info windows can provide additional context to a marker. You can place a marker on the map by using following code.

MarkerOptions marker = new MarkerOptions().position(new LatLng(latitude, longitude)).title("Dalton Hall");
googleMap.addMarker(marker);

But as you can see this may not be enough, we need to do operations on clicking the marker too, so we define them in the Marker Click Listener. We declare marker null initially so we check if the marker colour is changed previously or not.

private Marker previousMarker = null;

We check if the marker is initialized to change its colour again to initial colour, we can do other related manipulation like changing the map title here,

Note: the first thing that happens when a marker is clicked or tapped is that any currently showing info window is closed, and the GoogleMap.OnInfoWindowCloseListener is triggered. Then the OnMarkerClickListener is triggered. Therefore, calling isInfoWindowShown() on any marker from the OnMarkerClickListener will return false.

mGoogleMap.setOnMarkerClickListener(new GoogleMap.OnMarkerClickListener() {
   @Override
   public boolean onMarkerClick(Marker marker) {
       String locAddress = marker.getTitle();
       fillTextViews(locAddress);
       if (previousMarker != null) {
           previousMarker.setIcon(BitmapDescriptorFactory.defaultMarker(BitmapDescriptorFactory.HUE_RED));
       }
       marker.setIcon(BitmapDescriptorFactory.defaultMarker(BitmapDescriptorFactory.HUE_BLUE));
       previousMarker = marker;

       return true;
   }
});

It’s possible to customize the colour of the default marker image by passing a BitmapDescriptor object to the icon() method. You can use a set of predefined colours in the BitmapDescriptorFactory object, or set a custom marker colour with the BitmapDescriptorFactory.defaultMarker(float hue) method. The hue is a value between 0 and 360, representing points on a colour wheel. We use red colour when the marker is not clicked and blue when it is clicked so a user knows which one is clicked.

To conclude you can use an OnMarkerClickListener to listen for click events on the marker. To set this listener on the map, call GoogleMap.setOnMarkerClickListener(OnMarkerClickListener). When a user clicks on a marker, onMarkerClick(Marker) will be called and the marker will be passed through as an argument. This method returns a boolean that indicates whether you have consumed the event (i.e., you want to suppress the default behaviour). If it returns false, then the default behaviour will occur in addition to your custom behaviour. The default behaviour for a marker click event is to show its info window (if available) and move the camera such that the marker is centered on the map.

The final result looks like this, so you the user can see which marker is clicked as its colour is changed,

   

 

References:

  • Google Map APIs Documentation – https://developers.google.com/maps/documentation/android-api/marker
Continue ReadingMarker Click Management in Android Google Map API Version 2

Setting up Travis Continuous Integration in Giggity

Travis is a continuous integration service that enables you to run tests against your latest Android builds. You can setup your projects to run both unit and integration tests, which can also include launching an emulator. I recently added Travis Continuous Integration Connfa, Giggity and Giraffe app. In this blog, I describe how to set up Travis Continuous Integration in an Android Project with reference to Giggity app.

  • Use your GitHub account, sign in to either to Travis CI .org for public repositories or Travis CI .com for private repositories
  • Accept the GitHub access permissions confirmation.
  • Once you’re signed in to Travis CI, and synchronized your GitHub repositories, go to your profile page and enable the repository you want to build:

  • Now you need to add a .travis.yml file into the root of your project. This file will tell how Travis handles the builds. You should check your .travis file on Travis Web Lint before committing any changes to it.
  • You can find the very basic instructions for building an Android project from the Travis documentation. But here we specify the .travis.yml build accordingly for Giggity’s continuous integration. Here, language shows that it is an Android project. We write “language: ruby” if it is a ruby project.  If you need a more customizable environment running in a virtual machine, use the Sudo Enabled infrastructure. Similarly, we define the API, play services and libraries defined as shown.
language: android
sudo: required
jdk: 
 - oraclejdk8
# Use the Travis Container-Based Infrastructure
android:
  components:
    - platform-tools
    - tools
    - build-tools-25.0.3
    - android-25
    
    # For Google APIs
    - addon-google_apis-google-$ANDROID_API_LEVEL
    # Google Play Services
    - extra-google-google_play_services
    # Support library
    - extra-android-support
    # Latest artifacts in local repository
    - extra-google-m2repository
    - extra-android-m2repository
    - android-sdk-license-.+
    - '.+'

before_script:
  - chmod +x gradlew    

script:
  - ./gradlew build

Now when you make a commit or pull request Travis check if all the defines checks pass and it is able to be merged. To be more advanced you can also define if you want to build APKs too with every build.

References:

  • Travis Continuous Integration Documentation – https://docs.travis-ci.com/user/getting-started/
Continue ReadingSetting up Travis Continuous Integration in Giggity

Snackbar for Error Handling in Twitter Followers Insight loklak App

In this blog post am going to explain how the Twitter Followers Insight app handles error which occurs when when no query is passed to the “Search” function i.e., when the search is proceeded with an empty query.

How to handle the Exception

In such cases, I have used SNACKBAR / TOAST. Snackbar / Toast is used to popup an error notification on the screen when an exception occurs.

Script for Snackbar / Toast:

In the below script, initially the error is set to null i.e., no error. The “showError” function is which is being called when there occurs a situation of no query or an empty query. The function below helps to show an error popup which only shows till a time limit.

    $scope.error = null;

    $scope.showError = function() {
        $(".snackbar").addClass("show");
        setTimeout(function(){ $(".snackbar").removeClass("show") }, 3000);
    }

 

In this script, it checks whether the query passed is undefined or empty. If yes, then the error message which was null earlier is changed and that error is showed up on the screen to the end user. Snackbars animate upwards from the edge of the screen.

        if ($scope.query === '' || $scope.query === undefined) {
            $scope.spinner = false;
            $scope.error = "Please enter a valid Username";
            $scope.showError();
            return;
        }

 

Resources:

Continue ReadingSnackbar for Error Handling in Twitter Followers Insight loklak App

Filling Audio Buffer to Generate Waves in the PSLab Android App

The PSLab Android App works as an oscilloscope and a wave generator using the audio jack of the Android device. The implementation of the oscilloscope in the Android device using the in-built mic has been discussed in the blog post “Using the Audio Jack to make an Oscilloscope in the PSLab Android App” and the same has been discussed in the context of wave generator in the blog post “Implement Wave Generation Functionality in the PSLab Android App”. This post is a continuation of the post related to the implementation of wave generation functionality in the PSLab Android App. In this post, the subject matter of discussion is the way to fill the audio buffer so that the resulting wave generated is either a Sine Wave, a Square Wave or a Sawtooth Wave. The resultant audio buffer would be played using the AudioTrack API of Android to generate the corresponding wave. The waves we are trying to generate are periodic waves.

Periodic Wave: A wave whose displacement has a periodic variation with respect to time or distance, or both.

Thus, the problem reduces to generating a pulse which will constitute a single time period of the wave. Suppose we want to generate a sine wave; if we generate a continuous stream of pulses as illustrated in the image below, we would get a continuous sine wave. This is the main concept that we shall try to implement using code.

Initialise AudioTrack Object

AudioTrack object is initialised using the following parameters:

  • STREAM TYPE: Type of stream like STREAM_SYSTEM, STREAM_MUSIC, STREAM_RING, etc. For wave generation purposes we are using stream music. Every stream has its own maximum and minimum volume level.  
  • SAMPLING RATE: It is the rate at which the source samples the audio signal.
  • BUFFER SIZE IN BYTES: Total size of the internal buffer in bytes from where the audio data is read for playback.
  • MODES: There are two modes-
    • MODE_STATIC: Audio data is transferred from Java to the native layer only once before the audio starts playing.
    • MODE_STREAM: Audio data is streamed from Java to the native layer as audio is being played.

getMinBufferSize() returns the estimated minimum buffer size required for an AudioTrack object to be created in the MODE_STREAM mode.

minTrackBufferSize = AudioTrack.getMinBufferSize(SAMPLING_RATE, AudioFormat.CHANNEL_OUT_MONO, AudioFormat.ENCODING_PCM_16BIT);
audioTrack = new AudioTrack(
       AudioManager.STREAM_MUSIC,
       SAMPLING_RATE,
       AudioFormat.CHANNEL_OUT_MONO,
       AudioFormat.ENCODING_PCM_16BIT,
       minTrackBufferSize,
       AudioTrack.MODE_STREAM);

Fill Audio Buffer to Generate Sine Wave

Depending on the values in the audio buffer, the wave is generated by the AudioTrack object. Therefore, to generate a specific kind of wave, we need to fill the audio buffer with some specific values. The values are governed by the wave equation of the signal that we want to generate.

public short[] createBuffer(int frequency) {
   short[] buffer = new short[minTrackBufferSize];
   double f = frequency;
   double q = 0;
   double level = 16384;
   final double K = 2.0 * Math.PI / SAMPLING_RATE;

   for (int i = 0; i < minTrackBufferSize; i++) {
         f += (frequency - f) / 4096.0;
         q += (q < Math.PI) ? f * K : (f * K) - (2.0 * Math.PI);
         buffer[i] = (short) Math.round(Math.sin(q));
   }
   return buffer;
}

Fill Audio Buffer to Generate Square Wave

To generate a square wave, let’s assume the time period to be t units. So, we need the amplitude to be equal to A for t/2 units and -A for the next t/2 units. Repeating this pulse continuously, we will get a square wave.

buffer[i] = (short) ((q > 0.0) ? 1 : -1);

Fill Audio Buffer to Generate Sawtooth Wave

Ramp signals increases linearly with time. A Ramp pulse has been illustrated in the image below:

We need repeated ramp pulses to generate a continuous sawtooth wave.

buffer[i] = (short) Math.round((q / Math.PI));

Finally, when the audio buffer is generated, write it to the audio sink for playback using write() method exposed by the AudioTrack object.

audioTrack.write(buffer, 0, buffer.length);

Resources

Continue ReadingFilling Audio Buffer to Generate Waves in the PSLab Android App

Extending Markdown Support in Yaydoc

Yaydoc, our automatic documentation generator, builds static websites from a set of markup documents in markdown or reStructuredText format. Yaydoc uses the sphinx documentation generator internally hence reStructuredText support comes out of the box with it. To support markdown we use multiple techniques depending on the context. Most of the markdown support is provided by recommonmark, a docutils bridge for sphinx which basically converts markdown documents into proper docutil’s abstract syntax tree which is then converted to HTML by sphinx. While It works pretty well for most of the use cases, It does fall short in some instances. They are discussed in the following paragraphs.

The first problem was inclusion of other markdown files in the starting page. This was due to the fact that markdown does not supports any include mechanism. And if we used the reStructuredText include directive, the included text was parsed as reStructuredText. This problem was solved earlier using pandoc – an excellent tool to convert between various markup formats. What we did was that we created another directive mdinclude which converts the markdown to reStructuredText before inclusion. Although this was solved a while ago, The reason I’m discussing this here is that this was the inspiration behind the solution to our recent problem.

The problem we encountered was that recommonmark follows the Commonmark spec which is an ongoing effort towards standardization of markdown which has been somewhat lacking till now. The process is currently going on so the recommonmark library doesn’t yet support the concept of extensions to support various features of different markdown flavours not in the core commonmark spec. We could have settled for only supporting the markdown features in the core spec but tables not being present in the core spec was problematic. We had to support tables as it is widely used in most of the docs present in github repositories as GFM(Github Flavoured Markdown) renders ascii tables nicely.

The solution was to use a combination of recommonmark and pandoc. recommonmark provides a eval_rst code block which can be used to embed non-section reStructuredText within markdown. I created a new MarkdownParser class which inherited the CommonMarkParser class from recommonmark. Within it, using regular expressions, I convert any text within `<!– markdown+ –>` and `<!– endmarkdown+ –>`  into reStructuredText and enclose it within eval_rst code block. The result was that tables when enclosed within those trigger html comments would be converted to reST tables and then enclosed within eval_rst block which resulted in recommonmark renderering them properly. Below is a snippet which shows how this was implemented.

import re
from recommonmark.parser import CommonMarkParser
from md2rst import md2rst


MARKDOWN_PLUS_REGEX = re.compile('<!--\s+markdown\+\s+-->(.*?)<!--\s+endmarkdown\+\s+-->', re.DOTALL)
EVAL_RST_TEMPLATE = "```eval_rst\n{content}\n```"


def preprocess_markdown(inputstring):
    def callback(match_object):
        text = match_object.group(1)
        return EVAL_RST_TEMPLATE.format(content=md2rst(text))

    return re.sub(MARKDOWN_PLUS_REGEX, callback, inputstring)


class MarkdownParser(CommonMarkParser):
    def parse(self, inputstring, document):
        content = preprocess_markdown(inputstring)
        CommonMarkParser.parse(self, content, document)

Resources

Continue ReadingExtending Markdown Support in Yaydoc