Using CSS Grid in Loklak Search

CSS Grid is the latest web standard for the layouts in the web applications. This is the web standard which allows the HTML page to be viewed as 2-dimensional for laying out the elements in the page. It is thus used in parts of loklak search for layout. In this blog post, I will discuss the basic naming convention for CSS grid and its usage in Loklak Search for layout structuring and responsiveness.

CSS Grid Basics

There are some basic terminologies regarding grid few major ones are the following

Grid Container

The grid container is the container which is the wrapper of all the grid items. It is declared by display: grid, this makes all the direct children of that element to become grid items.

Grid Tracks

We define rows and columns of the grid as the lines, the area between any two lines is called a grid track. Tracks can be defined using any length unit. Grid also introduces an additional length unit to help us create flexible grid tracks. The new fr unit represents a fraction of the available space in the grid container.

Grid Cells

The area between any two horizontal and vertical lines is called a grid cell.

Grid Area

The area formed by the combination of two or more cells is called a grid area.

Using CSS grid in Loklak Search

The CSS grid is used in loklak search uses CSS grid in the feeds page to align elements in a responsive way on mobile and desktop. Earlier there was the issue that on small displays the info box of the results appeared after the feed results, and we needed to make sure that it appears on top on smaller displays. This is the outline of the structure of the feed page.

<div class=”feed-wrapper”>
<div class=”feed-results”>
<!-- Feed Results -->
</div>

<div class=”feed-info-box”>
<!-- Feed Info Box -->
</div>
</div>

Now we use the CSS grid to position the items according to the display width. First we declare the “feed-wrapper” as display:grid to make it a Grid Container, and we associate the rows and columns accordingly.

.feed-wrapper {
   display: grid;
   grid-template-columns: 150px 632px 455px 1fr;
   grid-template-rows: auto;
}

This defines the grid to be consisting of 4 columns of width 150px, 632px,  455px and one remaining unit i.e. 1fr. The rows are set to be auto.

Now we define the grid areas i.e. the names of the areas using the grid-area:<area> css property. This gives names to the elements in the CSS grid.

.feed-results {
   grid-area: feed-results;
}

.feed-info-box {
   grid-area: feed-info-box;
}

The last thing which remains now is to specify the position of these grid elements in the grid cells according to the display width, we use simple media queries along with simple grid area positioning property, i.e. grid-template-areas.

.feed-wrapper {
   /* Other Properties */
   @media(min-width: 1200px) {
      grid-template-areas: ". feed-results feed-info-box .";
   }

   @media(max-width: 1199px) {
      grid-template-columns: 1fr;
      grid-template-areas:
         "feed-info-box"
         "feed-results";
   }
}

This positions both the boxes according to the display width, in one column for large displays, and info box on top of results on mobile displays.

This is how it looks on the large desktop displays

 

This is how it looks on small mobile displays

Links and References

 

 

Continue Reading

Creating Sajuno Filter in Editor of Phimpme Android

What is Sajuno filter?

Sajuno filter is an image filter which we used in the editor of Phimpme Android application for brightening the skin region of a portrait photo.

How to perform?

Generally in a portrait photo, the dark regions formed due to shadows or low lightning conditions or even due to tanning of skin contains more darker reds than the greens and blues. So, for fixing this darkness of picture, we need to find out the area where reds are more dominant than the greens and blues. After finding the region of interest, we need to brighten that area corresponding to the difference of the reds and other colors.

How we implemented in Phimpme Android?

In Phimpme Android application, first we created a mask satisfying the above conditions. It can be created by subtracting blues and greens from red. The intensity can be varied by adjusting the intensity of reds. The condition mentioned here in programmatical way is shown below.


bright = saturate_cast<uchar>((intensity * r - g * 0.4 - b * 0.4));

In the above statement, r,g,b are the reds, greens and blues of the pixels respectively. The coefficients can be tweaked a little. But these are the values which we used in Phimpme Android application. After the above operation, a mask is generated as below.

 

This mask has the values that correspond to the difference of reds and greens and difference of reds and blues. So, we used this mask directly to increase the brightness of the dark toned skin of the original image. We simply need to add the mask and the original image. This results the required output image shown below.

 

As you can see the resultant image has less darker shades on the face than the original image. The way of implementation which we used in Phimpme Android editor is shown below.


double intensity = 0.5 + 0.35 * val;     // 0 < val < 1
dst = Mat::zeros(src.size(), src.type());
uchar r, g, b;
int bright;

for (y = 0; y < src.rows; y++) {
   for (x = 0; x < src.cols; x++) {
       r = src.at<Vec3b>(y, x)[0];
       g = src.at<Vec3b>(y, x)[1];
       b = src.at<Vec3b>(y, x)[2];

       bright = saturate_cast<uchar>((intensity * r - g * 0.4 - b * 0.4));
       dst.at<Vec3b>(y, x)[0] =
               saturate_cast<uchar>(r + bright);
       dst.at<Vec3b>(y, x)[1] =
               saturate_cast<uchar>(g + bright);
       dst.at<Vec3b>(y, x)[2] =
               saturate_cast<uchar>(b + bright);
   }
}

Resources:

Continue Reading
Close Menu