Implementing Timeline for Attendees Activity in Organizer App

Open Event Organizer App offers the functionality to Checkin/checkout attendees but the Organizer was unable to view when a particular attendee was checkin or checkout. We decided to implement a feature to view the timeline of checkin/checkout for each attendee.

Let’s begin by adding the dependency in build.gradle.

implementation “com.github.vipulasri:timelineview:”1.0.6”

In the recyclerview item layout add the TimeLineView layout. Following are some of the useful attributes.

  1. app:markerInCenter – This defines the position of the round marker within the layout. Setting it to true, position it in center.
  2. app:marker – Custom drawables can be set as marker.
app:markerSize=”20dp” />

The ViewHolder class will extend the RecyclerView,ViewHolder class. In the constructor, we will add a parameter viewType and then set it to TimeLine Marker layout using method initLine.

public CheckInHistoryViewHolder(CheckInHistoryLayoutBinding binding, int viewType) {
this.binding = binding;

In RecyclerViewAdapter, we will override the getItemViewType() method. Here we will use the getTimeLineViewType method which takes in position and total size of the recycler view list and returns a TimeLineView type object.

public int getItemViewType(int position) {
return TimelineView.getTimeLineViewType(position, getItemCount());


  1. TimeLineView library by VipulAsri
  2. Android Documentation for RecyclerViewAdapter
  3. Android Documentation for RecyclerViewView

Testing the ViewModels in Open Event Organizer App

In Open Event Organizer Android App we follow Test Driven Development Approach which means the features added in the app are tested thoroughly by unit tests. More tests would ensure better code coverage and fewer bugs. This blog explains how to write tests for Viewmodel class in MVVM architecture.


We will use JUnit4 to write unit tests and Mockito for creating mocks. The OrdersViewModel class returns the list of Order objects to the Fragment class. The objects are requested from OrderRepository class which fetches them from Network and Database. We will create a mock of OrderRepository class since it is out of context and contain logic that doesn’t depend on Orders Respository. Below is the getOrders method that we will test.

 public LiveData<List<Order>> getOrders(long id, boolean reload) {
if (ordersLiveData.getValue() != null && !reload)
return ordersLiveData;

compositeDisposable.add(orderRepository.getOrders(id, reload)
.doOnSubscribe(disposable -> progress.setValue(true))
.doFinally(() -> progress.setValue(false))
throwable -> error.setValue(ErrorUtils.getMessage(throwable).toString())));

return ordersLiveData;

We will be using InstantTaskExecutorRule() which is a JUnit Test Rule that swaps the background executor used by the Architecture Components with a different one which executes each task synchronously. We will use setUp() method to load the RxJavaPlugins, RxAndroid plugins and reset them in tearDown method which will ensure each test runs independently from the other and avoid memory leaks. After doing this initialization and basic setup for tests we can begin code the method shouldLoadOrdersSuccessfuly() to test the getOrders method present in ViewModel class. Let’s see the step by step approach.

  1. Use Mockito.when to return Observables one by one from ORDERS_LIST whenever the method getOrders of the mock orderRepository is called.
  2. We will use Mockito.InOrder and pass orders, orderRepository and progress to check if they are called in a particular order.
  3. We will use .observeForever method to observe on LiveData objects and add a ArrayList on change.
  4. Finally, we will test and verify if the methods are called in order.
public void shouldLoadOrdersSuccessfully() {
when(orderRepository.getOrders(EVENT_ID, false))

InOrder inOrder = Mockito.inOrder(orders, orderRepository, progress);


orders.onChanged(new ArrayList<>());

ordersViewModel.getOrders(EVENT_ID, false);

inOrder.verify(orders).onChanged(new ArrayList<>());
inOrder.verify(orderRepository).getOrders(EVENT_ID, false);

Similar approach can be followed for writing tests to check other behaviour of the ViewModel.


  1. Official Documentation for testing.
  2. Official Documentation for JUnit.
  3. Official documentation for Mockito.
  4. Open Event Organizer App codebase.

Swipe to Check In/Out in Open Event Organizer App

Open Event Organizer App didn’t provide any option for the Event Organizer to view the list of Attendees present under an Order and check them in/out the event. Therefore, we designed a system such that the Organizer can just swipe the attendee present under an order to check them in or out. In this blog post, I will discuss how we implemented this functionality in Open Event Organizer App without using any third party libraries.


We will create a separate class which extends ItemTouchHelper.SimpleCallback and provide the swiping functionalities to our plain old recyclerview. We will call the super constructor with ItemTouchHelper.LEFT and ItemTouchHelper.RIGHT as arguments to provide left as well as right movements in each recyclerview list item. The bitmaps and paint object initialized here will be used later in onDraw.

public SwipeController(OrderDetailViewModel orderDetailViewModel, OrderAttendeesAdapter orderAttendeesAdapter, Context context) {
super(0, ItemTouchHelper.LEFT | ItemTouchHelper.RIGHT);
this.orderDetailViewModel = orderDetailViewModel;
this.orderAttendeesAdapter = orderAttendeesAdapter;

closeIcon = BitmapFactory.decodeResource(context.getResources(), R.drawable.close);
doneIcon = BitmapFactory.decodeResource(context.getResources(), R.drawable.done);


Next, we will override getMovementFlags method. This method decides the allowed movement directions for each recyclerview item. The deciding logic is that, if an attendee is checked in then the allowed movement is left to check out and if an attendee is checked out then the allowed movement is right to check in. If neither of the above case, then both movements are allowed.

public int getMovementFlags(RecyclerView recyclerView, RecyclerView.ViewHolder viewHolder) {
int dragFlags = 0;

If (orderDetailViewModel.getCheckedInStatus(

viewHolder.getAdapterPosition()) == null)
makeMovementFlags(dragFlags, ItemTouchHelper.LEFT | ItemTouchHelper.RIGHT);

if (orderDetailViewModel.getCheckedInStatus(

viewHolder.getAdapterPosition())) {
return makeMovementFlags(dragFlags, ItemTouchHelper.LEFT);
} else {
return makeMovementFlags(dragFlags, ItemTouchHelper.RIGHT);

The onChildDraw method involves the code doing actual drawing. The variables used in code are discussed below.

  1. ActionState – Checks the state of the recycler view item. We proceed with the below logic if the item is being swiped.
  2. dX – The distance by which the item is swiped. Positive for left and negative for right.
  3. Background – Background of the viewholder. Rectangular in shape and dimensions changed with change in dX.
  4. IconDest – Calculates the position where the icons (close icon or done icon) is placed in canvas
  5. Canvas – Java Canvas on which the drawing is done. We set the background and draw the bitmaps on their location in canvas.
public void onChildDraw(Canvas canvas, RecyclerView recyclerView, RecyclerView.ViewHolder viewHolder,
float dX, float dY, int actionState, boolean isCurrentlyActive) {
if (actionState == ItemTouchHelper.ACTION_STATE_SWIPE) {
View itemView = viewHolder.itemView;
float height = (float) itemView.getBottom() – (float) itemView.getTop();
float width = height / 3;
RectF background;
Paint paint;
Bitmap icon;
RectF iconDest;

if (dX > 0) {
background = new RectF((float) itemView.getLeft(), (float) itemView.getTop(), dX,
(float) itemView.getBottom());
paint = paintGreen;
icon = doneIcon;
iconDest = new RectF((float) itemView.getLeft() + width,
(float) itemView.getTop() + width, (float) itemView.getLeft() + 2 * width,
(float) itemView.getBottom() – width);
} else {
background = new RectF((float) itemView.getRight() + dX, (float) itemView.getTop(),
(float) itemView.getRight(), (float) itemView.getBottom());
paint = paintRed;
icon = closeIcon;
iconDest = new RectF((float) itemView.getRight() – 2 * width,
(float) itemView.getTop() + width, (float) itemView.getRight() – width,
(float) itemView.getBottom() – width);

canvas.drawRect(background, paint);
canvas.drawBitmap(icon, null, iconDest, paint);
super.onChildDraw(canvas, recyclerView, viewHolder, dX, dY, actionState, isCurrentlyActive);

Now after the item is swiped out or in, we need to restore its original state again. For this we override the onSwiped method and call notifyItemChanged(). Also, the changes in UI (showing green side strip for checked in and red side strip for checked out) are done by. We call the toggleCheckin() method in ViewModel to toggle the checking status of the attendee in server and local database.

public void onSwiped(RecyclerView.ViewHolder viewHolder, int direction) {
int position = viewHolder.getAdapterPosition();


Last but not the least, we will override the onMove method to return false. Since we are not supporting drag and drop features therefore this method will never be called.

public boolean onMove(RecyclerView recyclerView, RecyclerView.ViewHolder viewHolder, RecyclerView.ViewHolder target) {
return false;


  1. Codebase for Open Event Organizer App
  2. Official documentation for ItemTouchHelper.SimpleCallback

Showing Order Details in Eventyay Organizer Android App

In Open Event Organizer App, the organizer was not able to view the details for the Orders received from attendees for his/her events. So in this blog we’ll see how we implemented this functionality in the Orga App.


There is a fragment showing the list of all orders for that event. The user will be able to click on order from the list which will then take the user to another fragment where Order details will be displayed. We will be following MVVM architecture to implement this functionality using REST API provided by Open Event Server. Let’s get started.

Firstly, we will create Order Model class. This contains various fields and relationship attributes to setup the table in database using RazizLabs DbFlow annotations.

Then, We will make a GET request to the server using Retrofit 2  to fetch Order object.

Observable<Order> getOrder(@Path(“identifier”) String identifier);

The server will return the Order details in form of a Order object and then we will save it in local  database so that when there is no network connectivity then also we can show data to the user and user can refresh to fetch the latest data from network. The network observable handles fetching data from network and disk observable handles saving data in local database.

public Observable<Order> getOrder(String orderIdentifier, boolean reload) {
Observable<Order> diskObservable = Observable.defer(() ->
.getItems(Order.class, Order_Table.identifier.eq(orderIdentifier)).take(1)

Observable<Order> networkObservable = Observable.defer(() ->
.doOnNext(order -> repository
.save(Order.class, order)

return repository

Now, we will make a Fragment class that will bind the layout file to the model in the onCreateView method using DataBindingUtil. Further, we will be observing on ViewModel to reflect changes of Order, Progress and Error objects in the UI in the onStart method of the Fragment.

public class OrderDetailFragment extends BaseFragment implements OrderDetailView {

public View onCreateView(LayoutInflater inflater, @Nullable ViewGroup container, @Nullable Bundle savedInstanceState) {
binding = DataBindingUtil.inflate(inflater, R.layout.order_detail_fragment, container, false);

orderDetailViewModel = ViewModelProviders.of(this, viewModelFactory).get(OrderDetailViewModel.class);

return binding.getRoot();

public void onStart() {

orderDetailViewModel.getOrder(orderIdentifier, eventId, false).observe(this, this::showOrderDetails);
orderDetailViewModel.getProgress().observe(this, this::showProgress);
orderDetailViewModel.getError().observe(this, this::showError);

Next, we will create OrderDetailsViewModel.This is the ViewModel class which interacts with the repository class to get data and the fragment class to show that data in UI.

Whenever the user opens Order details page, the method getOrder() twill be called which will request an Order object from OrderRepository, wrap it in MutableLiveData and provide it to Fragment.

Using MutableLiveData to hold the data makes the data reactive i.e. changes in UI are reflected automatically when the object changes. Further, we don’t have to worry handling the screen rotation as LIveData handles it all by itself.

  public LiveData<Order> getOrder(String identifier, long eventId, boolean reload) {
if (orderLiveData.getValue() != null && !reload)
return orderLiveData;

compositeDisposable.add(orderRepository.getOrder(identifier, reload)
.doOnSubscribe(disposable -> progress.setValue(true))
.doFinally(() -> progress.setValue(false))
.subscribe(order -> orderLiveData.setValue(order),
throwable -> error.setValue(ErrorUtils.getMessage(throwable))));

if (!reload) {

return orderLiveData;


  1. Codebase for Open Event Orga App
  2. Official documentation for LiveData Architecture Component
  3. Official Github Repository of Retrofit
  4. Official Github Repository for RxJava