Characteristization of Transistors Using PSLab

Transistors are one of the key building blocks of all electronics. They are fundamentally three-terminal semiconductor devices, with the terminals being labelled as the Emitter(E), Base(B), and Collector(C). These active components are found everywhere in electronics, and all of the complex processors that power everything from cellphones to aircraft employ millions of these devices in switching and amplification roles. In this blog post, we shall use the PSLab to explore some of the fundamental properties of transistors, and their various applications.

Transistor as an amplifier

In the schematic shown, we shall try to use an NPN transistor to amplify a small signal.

A small amplitude oscillation generated by W1 with the amplitude knob turned down to a very low level is used as the input. Since transistors do not handle bipolar signals, we have mixed a constant DC voltage generated PV3 to shift this small signal into the positive domain.

The fluctuating potential difference incident at the base of the transistor creates a corresponding current flow between the Base and Emitter.

By the fundamental property of transistors, this influences the path resistance between the Collector(C) and the Emitter(E) , and the resultant amplified voltage output can be monitored at the junction between the 1K resistor and the collector.

We have used CH1 to monitor the input voltage, and CH2 for the output

In a more applied scenario, we can implement the second schematic in order to create an audio amplifier. Instead of using W1 as the input signal, a speaker is used as a microphone. When a sound signal is incident on the speaker, its membrane oscillates, and as a result , the coil attached to it also does the same. Since this coil is placed in a magnetic field , its oscillations result in a change in the magnetic flux passing through, and this change causes a voltage(EMF) induced at its output. We then use our transistor amplifier to amplify this small EMF

Figure 2 : A Transistor being used to apply a gain of 81.5x to a small amplitude sine wave. The input waveform (green) is shown on a +/-500mV full scale and the output waveform is shown on a +/-8V scale in order to be able to view both. However, due to the difference in scales, the actual difference in amplitudes is 16 times more than what is visible.
Common Emitter Characteristics
Schematic Diagram

Any introductory course on transistors includes a diagram similar to the one shown , and a description about how for any base current, the collector current eventually saturates, and that this saturation level is proportional to the base current itself.

With the PSLab’s transistor CE characterization app, we can set up this experiment, and verify this for ourselves using an NPN transistor. The results shown were gathered using a 2N2222 transistor

In the schematic , the base current is determined by the voltage source PV2, and a high value series resistor of 200 KOhms . We use an analog input CH3 to monitor the voltage present at the Base of the transistor in order to calculate the total base current.

Base current = V/R = (PV2 – CH3) / 200e3

Now that we have set a particular base current, PV1 is used to sequentially increase the voltage across the collector and emitter of the transistor. A current limiting resistor of 1K Ohm is used, and CH1 is used to monitor the voltage drop across the transistor.

Collector current = V/R = (PV1 – CH1) / 1e3

Plotting the behaviour of the collector current with respect to the collector voltage gives us the familiar current voltage characteristics of a transistor.

Figure 3: Common emitter characteristics of an NPN transistor (2N2222) for various base currents

We can now alter the base current by changing PV2, and verify that the saturation current for the collector is indeed a function of it.



Making Custom Change Listeners in PSLab Android

In this post we are going to learn how to make custom change listeners. There are many use cases for custom change listeners like if you want to initiate some action when some variable’s value is changed. In PSLab android app, this was required during initialisation of PSLab hardware device, it takes about 3-4 seconds to initialise the device which includes reading calibration data from device and process it. So before starting the initialisation process, app notifies user with the message, “Initialising Wait …” and after initialisation is done, user is notified with the message “Initialisation Completed”.

There might be other ways to accomplish this but I found making a custom change listener for boolean and trigger notifying user action on change of boolean value to be most organised way to do it.

Another way I can think of is to pass the fragment reference to the class  constructor for which the object is to be made. And Views need to be made public for access from that object to change status after some work is done.

Let’s look at an example, we would change status in a fragment after some task in object instantiation is completed.


Class with variable on which custom change listener is required:
Create a class and declare a variable for which you want to listen the value change to trigger some action. In this example we have created a InitializationVariable class and defined a boolean variable named initialised.

Define an interface inside the class and that’s where the trick lies. When you set/change the value of the variable through a function setVariable(boolean value) in this case, note that we are triggering the interface method too.

public class InitializationVariable {

   public boolean initialised = false;
   private onValueChangeListener valueChangeListener;

   public boolean isInitialised() {
       return initialised;

   public void setVariable(boolean value) {
       initialised = value;
       if (valueChangeListener != null) valueChangeListener.onChange();

   public onValueChangeListener getValueChangeListener() {
       return valueChangeListener;

   public void setValueChangeListener(onValueChangeListener valueChangeListener) {
       this.valueChangeListener = valueChangeListener;

   public interface onValueChangeListener {
       void onChange();


Create an object of above class in activity/fragment:
Create an object to the class we just made and attach onValueChangeListener to it. This example shows how it’s used in PSLab Android, you can use it anywhere but remember to access view elements from a valid context.

public static InitializationVariable booleanVariable;
public class HomeFragment extends Fragment {

   TextView tvInitializationStatus;

   public static InitializationVariable booleanVariable;// object whose value change is noted

   public static HomeFragment newInstance() {
       HomeFragment homeFragment = new HomeFragment();
       return homeFragment;

   public View onCreateView(LayoutInflater inflater, @Nullable ViewGroup container, @Nullable Bundle savedInstanceState) {
       View view = inflater.inflate(R.layout.home_fragment, container, false);
       unbinder = ButterKnife.bind(this, view);
       return view;

   public void onViewCreated(View view, @Nullable Bundle savedInstanceState) {
       super.onViewCreated(view, savedInstanceState);

       booleanVariable.setValueChangeListener(new InitializationVariable.onValueChangeListener() {
           public void onChange() {
               if (booleanVariable.isInitialised())
                   tvInitializationStatus.setText("Initialsation Completed");
                   tvInitializationStatus.setText("Initialising Wait ...");

Now whenever booleanVariable.setVariable(value) is called, it triggers the onValueChangeListener where you can manage the action you wanted to do on value change.
This is similar to how other listeners are implemented .You implement an interface and call those interface methods on some value change and classes which implement those interface have overridden methods which handle the action after change.

Hopefully this post gives you an insight about how change listeners are implemented.

Note: This post was specific to PSLab Android App, you can create custom change listener on any variable in any class and perform action on value of the variable getting changed.


Opening Local HTML Files in PSLab Android App

The PSLab Android App allows users to perform experiments using the PSLab device. The experience to perform an experiment should resemble the generic way to perform the experiment. So we associated an Experiment Doc file which the user can refer to while performing experiment. Just like a regular lab manual, the experiment doc contains the AIM, THEORY & FORMULAS, SCHEMATIC, OUTPUT, etc. In the PSLab Desktop App, since there was already a provision for using HTML docs and so I  avoided reinventing the wheel and used those html files as it is.


The problem we faced was how to open a bunch of HTML files with their corresponding CSS, JS files in Android’s webView.

There are two ways it can be done:

  • Host the experiment docs on a server and make a request from the android app for the specific experiment doc like Diode I-V, Zener I-V, etc.
  • Put the folder containing all html, CSS, js files in assets folder and request for the HTML doc files locally.

The PSLab developer team went with the second option as the availability of  Internet  is necessary for the performing experiment if we follow the first option and so to avoid this dependence on the Internet, we went with the second option and stored HTML docs locally in assets folder.


  • Put the folder containing all the HTML, CSS, JS files in the assets folder in your android project. In this case the folder is DOC_HTML.

  • Define the WebView in xml and take the webView’s reference in your activity/fragment
    In xml
   android:layout_height="match_parent" />

In activity/fragment

webView = (WebView) view.findViewById(;
  • Load the url in webView in the format as shown below
webView.loadUrl("file:///android_asset/DOC_HTML/apps/" + htmlFile);

“file:///” acts as resource identifier, so file:///android_asset/ actually points to “pslab-android/app/src/main/assets/”.
From the assets directory, we can a provide route to any HTML file. Here I put all HTML files in apps folder and used the string variable “htmlFile” to point to the specific html file.

Similarly html files stored in the external storage can also be accessed but there are some cases you need to handle. For example,if external storage is mounted, you can’t request the html file from external storage.

To request html files from external storage, make sure that you have the following permission in your AndroidManifest.xml

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
String baseDir = Environment.getExternalStorageDirectory().getAbsolutePath();

Relative to baseDir you can specify the path from your html files, like

baseDir + “DOC_HTML/apps” + htmlFile


Putting HTML files in the assets folder and requesting it by webView’s loadURL() method is the best but there are various drawbacks of using this method like the increase in size of the apk. In our case, the normal apk size was 3MB but after adding the html doc folder it increased to 7MB. It increased by almost an additional size of the html folder added in assets. As it’s written, in the android’s project overview guide, the assets folder contains files that should be compiled into an .apk file as-is.


Plotting Digital Logic Lines In PSLab Android App

The PSLab device offers the Logic Analyzer functionality. A Logic Analyzer is a laboratory instrument that can capture and display digital signals from a digital system or circuit. It is similar to what an oscilloscope is for analog signals and is used to study timing relationship between different logic lines. It plots the logic lines/timing diagram which tells us the information about the state of the Digital System at any instant of time. For example, in the image below we can study the states of digital signals from channels ID1, ID2, ID3 at different times and find parameters like the propagation delay. It’s also used to find errors in Integrated Circuits (ICs) and debug logic circuits.

How I plotted ideal logic lines using MPAndroid Chart library?

Conventional method of adding data points results in the plot as illustrated in the image below. By conventional method I mean basically adding Y-axis (logic state) values corresponding to X-axis values (timestamp).

Result with normal adding and plotting data-points

In the above plot, logic lines follow non-ideal behaviour i.e they take some time in changing their state from high to low. This non-ideal behaviour of these lines increases when the user zooms in graph to analyse timestamps.

Solution to how we can achieve ideal behaviour of logic lines:

A better solution is to make use of timestamps for generating logic lines i.e time instants at which logic made a transition from HIGH -> LOW or LOW -> HIGH. Lets try to figure out with an example:

Timestamps = { 1, 3, 5, 8, 12 } and initial state is HIGH ( i.e at t = 0, it’s HIGH ). This implies that at t = 1, transition from HIGH to LOW took place so at t = 0, it’s HIGH, t = 1 it’s both HIGH and LOW,  at t = 2 it’s LOW.
Now at t = 0 & t = 2, you can simple put y = 1 and 0 respectively. But how do you add data-point for t = 1. Trick is to see how transition is taking place, if it’s HIGH to LOW then add first 1 for t = 1 and then 0 for t = 1.
So the set of points look something like this:

( Y, X ) ( LOGIC , TIME ) -> ( 1, 0 ) ( 1, 1 ) ( 0, 1) ( 0, 2 ) ( 0, 3 ) ( 1, 3 )  ( 1, 4 ) …

Code snippet for adding coordinates in this fashion:

int[] time = timeStamps.get(j);
for (int i = 0; i < time.length; i++) {
   if (initialState) {
       // Transition from HIGH -> LOW
       tempInput.add(new Entry(time[i], 1));
       tempInput.add(new Entry(time[i], 0));
   } else {
       // Transition from LOW -> HIGH
       tempInput.add(new Entry(time[i], 0));
       tempInput.add(new Entry(time[i], 1));

   // changing state variable
   initialState = !initialState;

After adding data-points in above mentioned way, we obtained ideal logic lines successfully as illustrated in the image given below


Integrating Stock Sensors with PSLab Android App

A sensor is a digital device (almost all the time an integrated circuit) which can receive data from outer environment and produce an electric signal proportional to that. This signal will be then processed by a microcontroller or a processor to provide useful functionalities. A mobile device running Android operating system usually has a few sensors built into it. The main purpose of these sensors is to provide user with better experience such as rotating the screen as he moves the device or turn off the screen when he is making a call to prevent unwanted screen touch events. PSLab Android application is capable of processing inputs received by different sensors plugged into it using the PSLab device and produce useful results. Developers are currently planning on integrating the stock sensors with the PSLab device so that the application can be used without the PSLab device.

This blog is about how to initiate a stock sensor available in the Android device and get readings from it. Sensor API provided by Google developers is really helpful in achieving this task. The process is consist of several steps. It is also important to note the fact that there are devices that support only a few sensors while some devices will support a lot of sensors. There are few basic sensors that are available in every device such as

  • “Accelerometer” – Measures acceleration along X, Y and Z axis
  • “Gyroscope” – Measures device rotation along X, Y and Z axis
  • “Light Sensor” – Measures illumination in Lux
  • “Proximity Sensor” – Measures distance to an obstacle from sensor

The implementing steps are as follows;

  1. Check availability of sensors

First step is to invoke the SensorManager from Android system services. This class has a method to list all the available sensors in the device.

SensorManager sensorManager;
sensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
List<Sensor> sensors = sensorManager.getSensorList(Sensor.TYPE_ALL);

Once the list is populated, we can iterate through this to find out if the required sensors are available and obstruct displaying activities related to sensors that are not supported by the device.

for (Sensor sensor : sensors) {
   switch (sensor.getType()) {
       case Sensor.TYPE_ACCELEROMETER:
       case Sensor.TYPE_GYROSCOPE:

  1. Read data from sensors

To read data sent from the sensor, one should implement the SensorEventListener interface. Under this interface, there are two method needs to be overridden.

public class StockSensors extends AppCompatActivity implements SensorEventListener {

    public void onSensorChanged(SensorEvent sensorEvent) {


    public void onAccuracyChanged(Sensor sensor, int i) {


Out of these two methods, onSensorChanged() method should be addressed. This method provides a parameter SensorEvent which supports a method call getType() which returns an integer value representing the type of sensor produced the event.

public void onSensorChanged(SensorEvent sensorEvent) {
   switch (sensorEvent.sensor.getType()) {
       case Sensor.TYPE_ACCELEROMETER:
       case Sensor.TYPE_GYROSCOPE:

Each available sensor should be registered under the SensorEventListener to make them available in onSensorChanged() method. The following code block illustrates how to modify the previous code to register each sensor easily with the listener.

for (Sensor sensor : sensors) {
   switch (sensor.getType()) {
       case Sensor.TYPE_ACCELEROMETER:
           sensorManager.registerListener(this, sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER), SensorManager.SENSOR_DELAY_UI);
       case Sensor.TYPE_GYROSCOPE:
           sensorManager.registerListener(this, sensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE), SensorManager.SENSOR_DELAY_UI);

Depending on the readings we can provide user with numerical data or graphical data using graphs plotted using MPAndroidChart in PSLab Android application.

The following images illustrate how a similar implementation is available in Science Journal application developed by Google.


Expandable ListView In PSLab Android App

In the PSLab Android App, we show a list of experiments for the user to perform or refer to while performing an experiment, using PSLab hardware device. A long list of experiments need to be subdivided into topics like Electronics, Electrical, School Level, Physics, etc. In turn, each category like Electronics, Electrical, etc can have a sub-list of experiments like:

  • Electronics
    • Diode I-V characteristics
    • Zener I-V characteristics
    • Transistor related experiments
  • Electrical
    • Transients RLC
    • Bode Plots
    • Ohm’s Law

This list can continue in similar fashion for other categories as well. We had to  display  this experiment list to the users with a good UX, and ExpandableListView seemed the most appropriate option.

ExpandableListView is a two-level listView. In the Group view an individual item can be expanded to show it’s children. The Items associated with ExpandableListView come from ExpandableListAdapter.









Implementation of Experiments List Using ExpandableListView

First, the ExpandableListView was declared in the xml layout file inside some container like LinearLayout/RelativeLayout.

<LinearLayout xmlns:android=""
       android:dividerHeight="2dp" />

Then we populated the data onto the ExpandableListView, by making an adapter for ExpandableListView by extending BaseExpandableListAdapter and implementing its methods. We then passed a Context, List<String> and Map<String,List<String>> to the Adapter constructor.

Context: for inflating the layout

List<String>: contains titles of unexpanded list

Map<String,List<String>>: contains sub-list mapped with title string

public SavedExperimentAdapter(Context context,
                                 List<String> experimentGroupHeader,
                                 HashMap<String, List<String>> experimentList) {
       this.context = context;
       this.experimentHeader = experimentGroupHeader;
       this.experimentList = experimentList;

In getGroupView() method, we inflate, set title and return group view i.e the main list that we see on clicking and the  sub-list is expanded. You can define your own layout in xml and inflate it. For PSLab Android, we used the default one provided by Android

public View getGroupView(int groupPosition, boolean isExpanded, View convertView, ViewGroup parent) {
   String headerTitle = (String) getGroup(groupPosition);
   if (convertView == null) {
       LayoutInflater inflater = (LayoutInflater) this.context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
       convertView = inflater.inflate(android.R.layout.simple_expandable_list_item_2, null);
   TextView tvExperimentListHeader = (TextView) convertView.findViewById(;
   tvExperimentListHeader.setTypeface(null, Typeface.BOLD);
   TextView tvTemp = (TextView) convertView.findViewById(;
   return convertView;

Similarly, in getChildView() method, we inflate, set data and return child view. We wanted simple TextView as sub-list item thus inflated the layout containing only TextView and setText by taking reference of textView from the inflated view.

public View getChildView(int groupPosition, int childPosition, boolean isLastChild, View convertView, ViewGroup parent) {
   String experimentName = (String) getChild(groupPosition, childPosition);
   if (convertView == null) {
       LayoutInflater inflater = (LayoutInflater) this.context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
       convertView = inflater.inflate(R.layout.experiment_list_item, null);
   TextView tvExperimentTitle = (TextView) convertView.findViewById(;
   return convertView;

The complete code for the Adapter can be seen here.

After creating the adapter we proceeded similarly to the normal ListView. Take the reference for ExpandableListView by findViewById() or BindView if you are using ButterKnife and set the adapter as an instance of adapter created above.

ExpandableListView experimentExpandableList;
experimentAdapter = new SavedExperimentAdapter(context, headerList, map);
Source: PSLab Android


We are planning to divide the experiment sub-list into categories like

  • Electronics
    • Diode
      • Diode I-V
      • Zener I-V
      • Diode Clamping
      • Diode Clipping
    • BJT and FET
      • Transistor CB (Common Base)
      • Transistor CE (Common Emitter)
      • Transistor Amplifier
      • N-FET output characteristic
    • Op-Amps
  • Electrical

This is a bit more complex than it looks, I tried using an ExpandableListView as a child for a group item but ran into some errors. I will write a post as soon as this view hierarchy has been achieved.


Exporting Functions in PSLab Firmware

Computer programs consist of several hundreds line of code. Smaller programs contain around few hundreds while larger programs like PSLab firmware contains lines of code expanding over 2000 lines. The major drawback with a code with lots of lines is the difficulty to debug and hardship for a new developer to understand the code. As a solution modularization techniques can be used to have the long code broken down to small set of codes. In C programming this can be achieved using different .c files and relevant .h(header) files.

The task is tricky as the main code contains a lot of interrelated functions and variables. Lots of errors were encountered when the large code in pslab-firmware being modularized into application specific files. In a scenario like this, global variables or static variables were a much of a help.

Global Variables in C

A global variable in C is a variable whose scope spans wide across the entire program. Updation to the variable will be reflected everywhere it is used.


Static Variables in C

This type of variables preserve their content regardless of the scope they are in.


Both the variables preserve their values but the memory usage is different depending on the implementation. This can be explained using a simple example.

Suppose a variable is required in different C files and it is defined in one of the header files as a local variable. The header file is then added to several other c files. When the program is compiled the compiler will create several copies of the same variable which will throw a compilation error as variable is already declared. In PSLab firmware, a variable or a method from one library has a higher probability of it being used in another one or many libraries.

This issue can be addressed in two different ways. They are by using static variables or global variables. Depending on the selection, the implementation is different.

The first implementation is using static variables. This type of variables at the time of compilation, create different copies of himself in different c files. Due to the fact that C language treats every C file as a separate program, if we include a header file with static variables in two c files, it will create two copies of the same variable. This will avoid the error messages with variables redeclared. Even though this fixes the issue in firmware, the memory allocation will be of a wastage. This is the first implementation used in PSLab firmware. The memory usage was very high due to duplicate variables taking much memory than they should take. This lead to the second implementation.



static int var_1;





static int var_1;




#include <stdio.h>
#include "first_header.h"
#include "second_header.h"

int main() {
    var_1 = 10;
    printf("%d", var_1);

The next implementation uses global variables. This type of variables need to be declared only in one header file and can be reused by declaring the header file in other c files. The global variables must be declared in a header file with the keyword extern and defined in the relevant c file once. Then it will be available throughout the application and no errors of variable redeclaration will occur while compiling. This became the final implementation for the PSLab-firmware to fix the compilation issues modularizing application specific C and header files.


Understanding PN Junctions with the Pocket Science Lab

The boundary layer between two thin films of a semiconducting material with Positive type and Negative type doping is referred to as a P-N junction, and these are one of the fundamental building blocks of electronics. These junctions exhibit various properties that have given them a rather indispensable status in modern day electronics.

The PSLab’s various measurement tools enable us to understand these devices, and in this blog post we shall explain some uses of PN junctions, and visualize their behaviour with the PSLab.

One might easily be confused and assume that a positive doping implies that the layer has a net positive charge, but this is not the case. A positive doping involves replacing a minute quantity of the semiconductor molecules with atoms from the next column in the periodic table. These atoms such as phosphorus are also charge neutral, but the number of available mobile charge carriers effectively increases.

A diode as a half-wave rectifier

A diode is basically just a PN junction. An ideal diode conducts electricity in one direction offering a path of zero resistance, and it is a perfect insulator in the other direction. In practice, we may observe some additional properties.

Figure : The circuit used for making the half-wave rectifier and studying it. A bipolar sinusoidal signal is input to a diode, and the output voltage is monitored. The 1uF capacitor is used to filter the output signal and make it more or less constant, but it has not been used while obtaining the data shown in the following image

Figure : A diode used as a half-wave rectifier. The input waveform shown in green was passed through a forward biased diode, and monitored by CH2 (red trace ) .

We can observe that only the positive half of the signal passes through the diode. It can also be observed , that since this is not an ideal diode, the conducted portion has lost some amplitude. This loss is a consequence of the forward threshold voltage of the PN junction, and in case of this diode, it is around 0.6 Volts. This threshold voltage depends on the band structure of the diode , and in the next section we shall examine this voltage for various diodes.

Measurement of Current-Voltage Characteristics of diodes

In practice, diodes only start conducting in the forward direction after a certain threshold potential difference is present. This voltage, also known as the barrier potential, depends on the band gap of the diode, and we shall measure it to determine how the electrical properties affect the externally visible physical properties of the diode.

A programmable voltage output of the PSLab (PV1) will be increased in small steps starting from 0 Volts, and a voltmeter input (CH3) will be used to determine the point when the diode starts conducting. The presence of a known resistor between PV1 and CH3 acts as a current limiter, and also enables us to calculate the current flow using some elementary application of the Ohm’s law. I = (PV1-CH3)/1000 .

The following image shows I-V characteristics of various diodes ranging from Schottky to Light Emitting Diodes (LEDs).

It may be interesting to note that the frequency of the light emitted by LEDs is directly proportional to the threshold voltage. In case of the white LED, it is almost similar to the blue LED because white LEDs are composed of blue LEDs, and a phosphor coating that partially converts blue light to yellow. The combination results in white light.

Zener diodes

Zener diodes are a special variant of diodes that also conduct electricity in the the reverse direction once a certain threshold has been crossed. This threshold can be determined during the manufacturing process, and zener diodes with breakdown voltages such as 3.3V , 5.6V , 6.8V etc are commercially available.

In the following image, the I-V characteristics of a 3.3V zener diode have been measured with the PSLab . As can be observed, the diode starts to conduct small amounts of current from around 2V itself, but significant current flow is usually present once the rated voltage is achieved.

In the forward direction, the zener appears to behave as a regular diode.


Real time Sensor Data Analysis on PSLab Android

PSLab device has the capacity to connect plug and play sensors through the I2C bus. The sensors are capable of providing data in real time. So, the PSLab Android App and the Desktop app need to have the feature to fetch real time sensor values and display the same in the user interface along with plotting the values on a simple graph.

The UI was made following the guidelines of Google’s Material Design and incorporating some ideas from the Science Journal app. Cards are used for making each section of the UI. There are segregated sections for real time updates and plotting where the real time data can be visualised. A methods for fetching the data are run continuously in the background which receive the data from the sensor and then update the screen.

The following section denotes a small portion of the UI responsible for displaying the data on the screen continuously and are quite simple enough. There are a number of TextViews which are being constantly updated on the screen. Their number depends on the type and volume of data sent by the sensor.

       android:textStyle="bold" />

       android:textStyle="bold" />


The section here represents the portion of the UI responsible for displaying the graph. Like all other parts of the UI of PSLab Android, MPAndroidChart is being used here for plotting the graph.


               android:background="#000" />


Since the updates needs to continuous, a process should be continuously run for updating the display of the data and the graph. There are a variety of options available in Android in this regard like using a Timer on the UI thread and keep updating the data continuously, using ASyncTask to run a process in the background etc.

The issue with the former is that since all the processes i.e. fetching the data and updating the textviews & graph will run on the UI thread, the UI will become laggy. So, the developer team chose to use ASyncTask and make all the processes run in the background so that the UI thread functions smoothly.

A new class SensorDataFetch which extends AsyncTask is defined and its object is created in a runnable and the use of runnable ensures that the thread is run continuously till the time the fragment is used by the user.

scienceLab = ScienceLabCommon.scienceLab;
i2c = scienceLab.i2c;
try {
    MPU6050 = new MPU6050(i2c);
} catch (IOException e) {
Runnable runnable = new Runnable() {
    public void run() {
        while (true) {
            if (scienceLab.isConnected()) {
                try {
                    sensorDataFetch = new SensorDataFetch();
                } catch (IOException e) {
new Thread(runnable).start();


The following is the code for the ASyncTask created. There are two methods defined here doInBackground and onPostExecute which are responsible for fetching the data and updating the display respectively.

The raw data is fetched using the getRaw method of the MPU6050 object and stored in an ArrayList. The data type responsible for storing the data will depend on the return type of the getRaw method of each sensor class and might be different for other sensors. The data returned by getRaw is semi-processed and the data just needs to be split in sections before presenting it for display.

The PSLab Android app’s sensor files can be viewed here and they can give a better idea about how the sensors are calibrated, how the intrinsic nonlinearity is taken care of, how the communication actually works etc.

After the data is stored, the control moves to the onPostExecute method, here the textviews on the display and the chart are updated. The updation is slowed down a bit so that the user can visualize the data received.

private class SensorDataFetch extends AsyncTask<Void, Void, Void> {
   MPU6050 MPU6050 = new MPU6050(i2c);
   ArrayList<Double> dataMPU6050 = new ArrayList<Double>();

   private SensorDataFetch(MPU6050 MPU6050) throws IOException {

   protected Void doInBackground(Void... params) {
       try {
           if (MPU6050 != null) {
               dataMPU6050 = MPU6050.getRaw();
       } catch (IOException e) {
           return null;

   protected void onPostExecute(Void aVoid) {

The detailed implementation of the same can be found here.

Additional Resources

  1. Learn more about how real time sensor data analysis can be used in various fields like IOT
  2. Google Fit guide on how to use native built-in sensors on phones, smart watches etc.
  3. A simple starter guide to build an app capable of real time sensor data analysis
  4. Learn more about using AsyncTask

Creating a Four Quadrant Graph for PSLab Android App

While working on Oscilloscope in PSLab Android, we had to implement XY mode. XY plotting is part of regular Oscilloscope and in XY plotting the 2 signals are plotted against each other. For XY plotting we require a graph with all 4 quadrants but none of the Graph-View libraries in Android support a 4 quadrants graph. We need to find a solution for this. So, we used canvas class to draw a 4 quadrants graph.  The Canvas class defines methods for drawing text, lines, bitmaps, and many other graphics primitives. Let’s discuss how a 4 quadrants graph is implemented using Canvas.

Initially, a class Plot2D extending View is created along with a constructor in which context, values for X-Axis, Y-Axis.

public class Plot2D extends View {
public Plot2D(Context context, float[] xValues, float[] yValues, int axis) {
   this.xValues = xValues;
   this.yValues = yValues;
   this.axis = axis;
   vectorLength = xValues.length;
   paint = new Paint();
   getAxis(xValues, yValues);


So, now we need to convert a particular float value in a pixel. This is the most important part and for this, we create a function where we send the value of the pixels, the minimum and the maximum value of the axis and array of float values. We get an array of converted pixel values in return. p[i] = .1 * pixels + ((value[i] – min) / (max – min)) * .8 * pixels; is the way to transform an int value to a respective pixel value.

private int[] toPixel(float pixels, float min, float max, float[] value) {
   double[] p = new double[value.length];
   int[] pInt = new int[value.length];

   for (int i = 0; i < value.length; i++) {
       p[i] = .1 * pixels + ((value[i] - min) / (max - min)) * .8 * pixels;
       pInt[i] = (int) p[i];
   return (pInt);


For constructing a graph we require to create the axis, add markings/labels and plot data in the graph. To achieve this we will override onDraw method. The parameter to onDraw() is a Canvas object that the view can use to draw itself. First, we need to get various parameters like data to plot, canvas height and width, the location of the x axis and y axis etc.

protected void onDraw(Canvas canvas) {

   float canvasHeight = getHeight();
   float canvasWidth = getWidth();
   int[] xValuesInPixels = toPixel(canvasWidth, minX, maxX, xValues);
   int[] yValuesInPixels = toPixel(canvasHeight, minY, maxY, yValues);
   int locxAxisInPixels = toPixelInt(canvasHeight, minY, maxY, locxAxis);
   int locyAxisInPixels = toPixelInt(canvasWidth, minX, maxX, locyAxis);


Drawing the axis

First, we will draw the axis and for this, we will use the white color. To draw the white color axis line we will the following code.

canvas.drawLine(0, canvasHeight - locxAxisInPixels, canvasWidth,
       canvasHeight - locxAxisInPixels, paint);
canvas.drawLine(locyAxisInPixels, 0, locyAxisInPixels, canvasHeight,


Adding the labels

After drawing the axis lines, now we need to mark labels for both x and y axis. For this, we use the following code in onDraw method. By this, the axis labels are automatically marked after a fixed distance. The no. of labels depends on the value of n. The code ensures that the markings are apt for each of the quadrant, for example in the first quadrant the markings of the x axis is below the axis, whereas markings of the y axis are to the left.

float temp = 0.0f;
int n = 8;
for (int i = 1; i <= n; i++) {
    if (i <= n / 2) {
           temp = Math.round(10 * (minX + (i - 1) * (maxX - minX) / n)) / 10;
           canvas.drawText("" + temp,
                   (float) toPixelInt(canvasWidth, minX, maxX, temp),
                   canvasHeight - locxAxisInPixels - 10, paint);
           temp = Math.round(10 * (minY + (i - 1) * (maxY - minY) / n)) / 10;
           canvas.drawText("" + temp, locyAxisInPixels + 10, canvasHeight
                           - (float) toPixelInt(canvasHeight, minY, maxY, temp),
       } else {
           temp = Math.round(10 * (minX + (i - 1) * (maxX - minX) / n)) / 10;
           canvas.drawText("" + temp,
                   (float) toPixelInt(canvasWidth, minX, maxX, temp),
                   canvasHeight - locxAxisInPixels + 30, paint);
           temp = Math.round(10 * (minY + (i - 1) * (maxY - minY) / n)) / 10;
           canvas.drawText("" + temp, locyAxisInPixels - 65, canvasHeight
                           - (float) toPixelInt(canvasHeight, minY, maxY, temp),

By using this code we get the following results

Plotting the data

The last step is to plot the data, to achieve this we first convert float values of x axis and y axis data point to pixels using toPixel method and simply draw it on the graph. In addition to this, we set a red color to the line.

canvas.drawARGB(255, 0, 0, 0);
for (int i = 0; i < vectorLength - 1; i++) {
   canvas.drawLine(xValuesInPixels[i], canvasHeight
           - yValuesInPixels[i], xValuesInPixels[i + 1], canvasHeight
           - yValuesInPixels[i + 1], paint);


This implements a 4 quadrants graph in PSLab Android app for XY plotting in Oscilloscope Activity. The entire code for the same is available in here.


  1. A simple 2D Plot class for Android
  2. reference of Custom Drawing