Permission Decorators

A follow-up to one of my previous posts: Organizer Server Permissions System.

I recently had a requirement to create permission decorators for use in our REST APIs. There had to be separate decorators for Event and Services.

Event Permission Decorators

Understanding Event permissions is simple: Any user can create an event. But access to an event is restricted to users that have Event specific Roles (e.g. Organizer, Co-organizer, etc) for that event. The creator of an event is its Organizer, so he immediately gets access to that event. You can read about these roles in the aforementioned post.

So for Events, create operation does not require any permissions, but read/update/delete operations needed a decorator. This decorator would restrict access to users with event roles.

def can_access(func):
    """Check if User can Read/Update/Delete an Event.
    This is done by checking if the User has a Role in an Event.
    """
    @wraps(func)
    def wrapper(*args, **kwargs):
        user = UserModel.query.get(login.current_user.id)
        event_id = kwargs.get('event_id')
        if not event_id:
            raise ServerError()
        # Check if event exists
        get_object_or_404(EventModel, event_id)
        if user.has_role(event_id):
            return func(*args, **kwargs)
        else:
            raise PermissionDeniedError()
    return wrapper

The has_role(event_id) method of the User class determines if the user has a Role in an event.

# User Model class

    def has_role(self, event_id):
        """Checks if user has any of the Roles at an Event.
        """
        uer = UsersEventsRoles.query.filter_by(user=self, event_id=event_id).first()
        if uer is None:
            return False
        else:
            return True

Reading one particular event (/events/:id [GET]) can be restricted to users, but a GET request to fetch all the events (/events [GET]) should only be available to staff (Admin and Super Admin). So a separate decorator to restrict access to Staff members was needed.

def staff_only(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        user = UserModel.query.get(login.current_user.id)
        if user.is_staff:
            return func(*args, **kwargs)
        else:
            raise PermissionDeniedError()
    return wrapper

Service Permission Decorators

Service Permissions for a user are defined using Event Roles. What Role a user has in an Event determines what Services he has access to in that Event. Access here means permission to Create, Read, Update and Delete services. The User model class has four methods to determine the permissions for a Service in an event.

user.can_create(service, event_id)
user.can_read(service, event_id)
user.can_update(service, event_id)
user.can_delete(service, event_id)

So four decorators were needed to put alongside POST, GET, PUT and DELETE method handlers. I’ve pasted snippet for the can_update decorator. The rest are similar but with their respective permission methods for User class object.

def can_update(DAO):
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            user = UserModel.query.get(login.current_user.id)
            event_id = kwargs.get('event_id')
            if not event_id:
                raise ServerError()
            # Check if event exists
            get_object_or_404(EventModel, event_id)
            service_class = DAO.model
            if user.can_update(service_class, event_id):
                return func(*args, **kwargs)
            else:
                raise PermissionDeniedError()
        return wrapper
    return decorator

This decorator is a little different than can_access event decorator in a way that it takes an argument, DAO. DAO is Data Access Object. A DAO includes a database Model and methods to create, read, update and delete object of that model. The db model for a DAO would be the Service class for the object. You can look that the model class is taken from the DAO and used as the service class.

The can_create, can_read and can_delete decorators look exactly the same except they use their (obvious) permission methods on the User class object.

Continue ReadingPermission Decorators

Open-Event Permissions System and integrating it with decorators

All the large scale applications require a permissions system. Thus we also implemented a permissions system in our open-event organization server. It consists of certain pre-decided roles:

  1. Super-Admin
  2. Admin
  3. Organizer
  4. Co organizer
  5. Track organizer
  6. Anonymous user

Now we had to decide the permissions which each role would have. Hence we created a documentation regarding what URLs can be accessed by each role. We developed a list of services which the roles could use their permissions to access:

  1. Tracks
  2. Microlocations
  3. Speakers
  4. Sessions
  5. Sponsors

Thus the final step was to implement the permissions system to the appropriate views or URLs. Here comes the power of Flask decorators . I created a individual decorators @is_organizer, @is_admin, @is_super_admin etc… to check the respective roles. I created one main decorator @can_access to see whether the role can access the particular URL or view function

decorator

So in the above decorator I have simply take in the url and check whether it has ‘create’, ‘edit’ or ‘delete’ words in it. Depending on that the control goes in the particular IF statement. Now once it is decided what operation is being performed it checks what service is being accessed by the user. For example: if the operation is edit then it will check whether the service being edited is an event, session, sponsor etc…

Similar checks are performed by each operation. A check is performed of the request.url to see whether the string for that service is present in it. After it knows what service is being accessed its just a matter of using the CRUD functions of user table to check if the role accessing the resource has the requested permission using the functions:

  1. user.can_create()
  2. user.can_read()
  3. user.can_update()
  4. user.can_delete()

After this its just a matter of adding the decorator to each of the view functions and the system is implemented.  🙂

Continue ReadingOpen-Event Permissions System and integrating it with decorators

Organizer Server Permissions System

This post discusses about the Organizer Server Permissions System and how it has been implemented using database models.

The Organizer Server Permissions System includes Roles, and Services that these roles can access. Roles can broadly be classified into Event-specific Roles and System-wide Roles.

System-Wide Roles

System-wide roles can be considered a part of the staff maintaining the platform. We define two such roles: Admin and Super Admin. The Super Admin is the highest level user with permissions to access system logs, manage event-specific roles, etc.

System-wide roles are the easiest to implement. Since they’re directly related to a user we can add them as class variables in the User models.

class User(db.Model):
    # other stuff

    is_admin = db.Column(db.Boolean, default=False)
    is_super_admin = db.Column(db.Boolean, default=False)

    @property
    def is_staff(self):
        return self.is_admin or self.is_super_admin

Staff groups Admin and Super Admin roles. So to check if a user is a part of the staff (an admin or a super admin), the is_staff property can directly be used.

user.is_staff

Event-Specific Roles

An Event itself can contain many entities like Tracks, Sponsors, Sessions, etc. Our goal was to define permissions for Roles to access these entities. We grouped these entities and put them under “Services”. Services are nothing but database models associated with an event, that need to have restricted access for the Roles.

We define the following Services for an Event:

  • Track
  • Session
  • Speaker
  • Sponsor
  • Microlocation

Each of these services can either be created, read, updated or deleted. And depending on the Role a user has been assigned for a particular event, he or she can perform such operations.

There are four Event-Specific Roles:

  • Organizer
  • Co-organizer
  • Track Organizer
  • Moderator

As soon as the user creates an event, he is assigned the role of an Organizer, giving him access to all the services for that event. An Organizer can perform any operation on any of the services. A Co-organizer also has access to all the services but can only update them. A Track Organizer can just read and update already created Tracks. The Moderator can only read Tracks.

Although the initial distribution of permissions is kept as above, the Super Admin can (has permissions to) edit them later.

Screenshot from 2016-06-24 02:41:47

To implement permissions for Event specific roles, three new database models were required: Role, Service and Permission.

Role and Service would contain the above mentioned Roles and Services respectively. Permission would contain a Role column, a Service column and four other columns specifying what operation (create/read/update/delete) that Role is allowed to perform on the Service.

The final objective was to define these methods for the User class:

user.can_create(service, event_id)
user.can_read(service, event_id)
user.can_update(service, event_id)
user.can_delete(service, event_id)

Before this we needed a table specifying what Event Roles have been created for an event, and which users have been assigned these roles. The `UsersEventsRoles` model maintained this relationship.

We also needed to check if a user has been assigned a particular role for an event. For this I created a method for each of the roles.

# Event-specific Roles
ORGANIZER = 'organizer'
COORGANIZER = 'coorganizer'
TRACK_ORGANIZER = 'track_organizer'
MODERATOR = 'moderator'

class User(db.Model):
    # other stuff

    def _is_role(self, role_name, event_id):
        role = Role.query.filter_by(name=role_name).first()
        uer = UsersEventsRoles.query.filter_by(user=self,
                                               event_id=event_id,
                                               role=role).first()
        if not uer:
            return False
        else:
            return True

    def is_organizer(self, event_id):
        return self._is_role(ORGANIZER, event_id)

    def is_coorganizer(self, event_id):
        return self._is_role(COORGANIZER, event_id)

    def is_track_organizer(self, event_id):
        return self._is_role(TRACK_ORGANIZER, event_id)

    def is_moderator(self, event_id):
        return self._is_role(MODERATOR, event_id)

Here _is_role helps reduce code redundancy.

Like I said, our final objective was to create methods that determine if a user has permission to perform a particular operation on a service based on the role, I defined the following methods:

    # ...`User` class

    def _has_perm(self, operation, service_class, event_id):
        # Operation names and their corresponding permission in `Permissions`
        operations = {
            'create': 'can_create',
            'read': 'can_read',
            'update': 'can_update',
            'delete': 'can_delete',
        }
        if operation not in operations.keys():
            raise ValueError('No such operation defined')

        try:
            service_name = service_class.get_service_name()
        except AttributeError:
            # If `service_class` does not have `get_service_name()`
            return False

        service = Service.query.filter_by(name=service_name).first()

        uer_querylist = UsersEventsRoles.query.filter_by(user=self,
                                                         event_id=event_id)
        for uer in uer_querylist:
            role = uer.role
            perm = Permission.query.filter_by(role=role,
                                              service=service).first()
            if getattr(perm, operations[operation]):
                return True

        return False

    def can_create(self, service_class, event_id):
        return self._has_perm('create', service_class, event_id)

    def can_read(self, service_class, event_id):
        return self._has_perm('read', service_class, event_id)

    def can_update(self, service_class, event_id):
        return self._has_perm('update', service_class, event_id)

    def can_delete(self, service_class, event_id):
        return self._has_perm('delete', service_class, event_id)

The can_create, can_read, etc. defined in operations are the four columns in the Permission db model. Like _is_role, _has_perm method helps implementing the DRY philosophy.

Continue ReadingOrganizer Server Permissions System