Swipe to Check In/Out in Open Event Organizer App

Open Event Organizer App didn’t provide any option for the Event Organizer to view the list of Attendees present under an Order and check them in/out the event. Therefore, we designed a system such that the Organizer can just swipe the attendee present under an order to check them in or out. In this blog post, I will discuss how we implemented this functionality in Open Event Organizer App without using any third party libraries.

Specifications

We will create a separate class SwipeController.java which extends ItemTouchHelper.SimpleCallback and provide the swiping functionalities to our plain old recyclerview. We will call the super constructor with ItemTouchHelper.LEFT and ItemTouchHelper.RIGHT as arguments to provide left as well as right movements in each recyclerview list item. The bitmaps and paint object initialized here will be used later in onDraw.

public SwipeController(OrderDetailViewModel orderDetailViewModel, OrderAttendeesAdapter orderAttendeesAdapter, Context context) {
super(0, ItemTouchHelper.LEFT | ItemTouchHelper.RIGHT);
this.orderDetailViewModel = orderDetailViewModel;
this.orderAttendeesAdapter = orderAttendeesAdapter;

closeIcon = BitmapFactory.decodeResource(context.getResources(), R.drawable.close);
doneIcon = BitmapFactory.decodeResource(context.getResources(), R.drawable.done);

paintGreen.setColor(context.getResources().getColor(R.color.light_green_500));
paintRed.setColor(context.getResources().getColor(R.color.red_500));
}

Next, we will override getMovementFlags method. This method decides the allowed movement directions for each recyclerview item. The deciding logic is that, if an attendee is checked in then the allowed movement is left to check out and if an attendee is checked out then the allowed movement is right to check in. If neither of the above case, then both movements are allowed.

@Override
public int getMovementFlags(RecyclerView recyclerView, RecyclerView.ViewHolder viewHolder) {
int dragFlags = 0;

If (orderDetailViewModel.getCheckedInStatus(

viewHolder.getAdapterPosition()) == null)
makeMovementFlags(dragFlags, ItemTouchHelper.LEFT | ItemTouchHelper.RIGHT);

if (orderDetailViewModel.getCheckedInStatus(

viewHolder.getAdapterPosition())) {
return makeMovementFlags(dragFlags, ItemTouchHelper.LEFT);
} else {
return makeMovementFlags(dragFlags, ItemTouchHelper.RIGHT);
}
}

The onChildDraw method involves the code doing actual drawing. The variables used in code are discussed below.

  1. ActionState – Checks the state of the recycler view item. We proceed with the below logic if the item is being swiped.
  2. dX – The distance by which the item is swiped. Positive for left and negative for right.
  3. Background – Background of the viewholder. Rectangular in shape and dimensions changed with change in dX.
  4. IconDest – Calculates the position where the icons (close icon or done icon) is placed in canvas
  5. Canvas – Java Canvas on which the drawing is done. We set the background and draw the bitmaps on their location in canvas.
@Override
public void onChildDraw(Canvas canvas, RecyclerView recyclerView, RecyclerView.ViewHolder viewHolder,
float dX, float dY, int actionState, boolean isCurrentlyActive) {
if (actionState == ItemTouchHelper.ACTION_STATE_SWIPE) {
View itemView = viewHolder.itemView;
float height = (float) itemView.getBottom() – (float) itemView.getTop();
float width = height / 3;
RectF background;
Paint paint;
Bitmap icon;
RectF iconDest;

if (dX > 0) {
background = new RectF((float) itemView.getLeft(), (float) itemView.getTop(), dX,
(float) itemView.getBottom());
paint = paintGreen;
icon = doneIcon;
iconDest = new RectF((float) itemView.getLeft() + width,
(float) itemView.getTop() + width, (float) itemView.getLeft() + 2 * width,
(float) itemView.getBottom() – width);
} else {
background = new RectF((float) itemView.getRight() + dX, (float) itemView.getTop(),
(float) itemView.getRight(), (float) itemView.getBottom());
paint = paintRed;
icon = closeIcon;
iconDest = new RectF((float) itemView.getRight() – 2 * width,
(float) itemView.getTop() + width, (float) itemView.getRight() – width,
(float) itemView.getBottom() – width);
}

canvas.drawRect(background, paint);
canvas.drawBitmap(icon, null, iconDest, paint);
}
super.onChildDraw(canvas, recyclerView, viewHolder, dX, dY, actionState, isCurrentlyActive);
}

Now after the item is swiped out or in, we need to restore its original state again. For this we override the onSwiped method and call notifyItemChanged(). Also, the changes in UI (showing green side strip for checked in and red side strip for checked out) are done by. We call the toggleCheckin() method in ViewModel to toggle the checking status of the attendee in server and local database.

@Override
public void onSwiped(RecyclerView.ViewHolder viewHolder, int direction) {
int position = viewHolder.getAdapterPosition();

orderDetailViewModel.toggleCheckIn(position);
orderAttendeesAdapter.notifyItemChanged(position);
}

Last but not the least, we will override the onMove method to return false. Since we are not supporting drag and drop features therefore this method will never be called.

@Override
public boolean onMove(RecyclerView recyclerView, RecyclerView.ViewHolder viewHolder, RecyclerView.ViewHolder target) {
return false;
}

Resources

  1. Codebase for Open Event Organizer App https://github.com/fossasia/open-event-orga-app
  2. Official documentation for ItemTouchHelper.SimpleCallback https://developer.android.com/reference/android/support/v7/widget/helper/ItemTouchHelper.SimpleCallback
Continue ReadingSwipe to Check In/Out in Open Event Organizer App

Giving Offline Support to the Open Event Organizer Android App

Open Event Organizer is an Android Application for Event Organizers and Entry Managers which uses Open Event API Server as a backend. The core feature of the App is to scan a QR code to validate an attendee’s check in. The App maintains a local database and syncs it with the server. The basic workflow of the attendee check in is – the App scans a QR code on an attendee’s ticket. The code scanned is processed to validate the attendee from the attendees database which is maintained locally. On finding, the App makes a check in status toggling request to the server. The server toggles the status of the attendee and sends back a response containing the updated attendee’s data which is updated in the local database. Everything described above goes well till the App gets a good network connection always which cannot be assumed as a network can go down sometimes at the event site. So to support the functionality even in the absence of the network, Orga App uses Job Schedulers which handle requests in absence of network and the requests are made when the network is available again. I will be talking about its implementation in the App through this blog.

The App uses the library Android-Job developed by evernote which handles jobs in the background. The library provides a class JobManager which does most of the part. The singleton of this class is initialized in the Application class. Job is the class which is where actually a background task is implemented. There can be more than one jobs in the App, hence the library requires to implement JobCreator interface which has create method which takes a string tag and the relevant Job is returned. JobCreator is passed to the JobManager in Application while initialization. The relevant code is:

JobManager.create(this).addJobCreator(new OrgaJobCreator());

Initialization of JobManager in Application class

public class OrgaJobCreator implements JobCreator {
   @Override
   public Job create(String tag) {
       switch (tag) {
           case AttendeeCheckInJob.TAG:
               return new AttendeeCheckInJob();
           default:
               return null;
       }
   }
}

Implementation of JobCreator

public class AttendeeCheckInJob extends Job {
   ...
   ...
   @NonNull
   @Override
   protected Result onRunJob(Params params) {
       ...
       ...
       Iterable<Attendee> attendees = attendeeRepository.getPendingCheckIns().blockingIterable();
       for (Attendee attendee : attendees) {
           try {
               Attendee toggled = attendeeRepository.toggleAttendeeCheckStatus(attendee).blockingFirst();
               ...
           } catch (Exception exception) {
               ...
               return Result.RESCHEDULE;
           }
       }
       return Result.SUCCESS;
   }

   public static void scheduleJob() {
       new JobRequest.Builder(AttendeeCheckInJob.TAG)
           .setExecutionWindow(1, 5000L)
           .setBackoffCriteria(10000L, JobRequest.BackoffPolicy.EXPONENTIAL)
           .setRequiredNetworkType(JobRequest.NetworkType.CONNECTED)
           .setRequirementsEnforced(true)
           .setPersisted(true)
           .setUpdateCurrent(true)
           .build()
           .schedule();
   }
}

Job class for attendee check in job

To create a Job, these two methods are overridden. onRunJob is where the actual background job is going to run. This is the place where you implement your job logic which should be run in the background. In this method, the attendees with pending sync are fetched from the local database and the network requests are made. On failure, the same job is scheduled again. The process goes on until the job is done. scheduleJob method is where the related setting options are set. This method is used to schedule an incomplete job.

So after this implementation, the workflow described above is changed. Now on attendee is found, it is updated in local database before making any request to the server and the attendee is flagged as pending sync. Accordingly, in the UI single tick is shown for the attendee which is pending for sync with the server. Once the request is made to the server and the response is received, the pending sync flag of the attendee is removed and double tick is shown against the attendee.

Links:
1. Documentation for Android-Job Library by evernote
2. Github Repository of Android-Job Library

Continue ReadingGiving Offline Support to the Open Event Organizer Android App