Documenting APIs with Yaydoc

API Documentation is a quick and concise way to tell a user about how to use a library or work with a program. It details classes, functions, parameters, return types and more. Courtesy of Sphinx, Yaydoc had build in support for Documenting APIs for Python based projects right from it’s inception. Sphinx has a built in tool autodoc which provides certain directives such as autoclass, automodule, etc which can be used to automatically extract docstrings from all specified Python packages and modules and use it to generate API documentation. As a user of Yaydoc you could add ReST sources files with appropriate directives provided by autodoc and we would handle the rest. As part of enhancing this feature we wanted to do three things.

  • Enhance support for Python
  • Extend API documentation to other languages apart from Python
  • Automate the process of generating ReST source files

For Enhancing support for python projects, we implemented a few things.

Since autodoc imports the modules it needs to document, There could be import errors if a dependency was not met. To fix this issue, Now a user can specify certain modules to be mocked. This would really come in handy with projects depending on packages with third party C extensions such as numpy, scipy, etc.

{% if mock_modules %}
mock_modules = [name.strip() for name in '{{ mock_modules }}'.split(',')]
sys.modules.update((mod_name, mock.Mock()) for mod_name in mock_modules)
{% endif %}

Apart from this, if we detect a setup.py in the repository or a requirements.txt, we automatically try to install from it to meet dependencies.

# autodoc imports the module while building source files. To avoid
# ImportError, install any packages in requirements.txt of the project
# if available
if [ -f $ROOT_DIR/setup.py ]; then
  pip install $ROOT_DIR/
elif [ -f $ROOT_DIR/requirements.txt ]; then
  pip install -q -r $ROOT_DIR/requirements.txt
fi

We also crawl the repository to detect any packages and add them to sys.path. With these changes, a user can expected generated API docs without having to extend conf.py.

{% if autoapi_python == 'true' %}
for (dirpath, dirnames, filenames) in os.walk('{{ root_dir }}'):
    # Directory contains __init__.py. It should be a python package
    if '__init__.py' in filenames:
        # appending instead of inserting at front so that user
        # cannot overwrite some of our own modules.
        sys.path.append(os.path.abspath(os.path.dirname(dirpath)))
{% endif %}

The second goal is a no brainer. We would like to support as many languages as we can. With this week’s update, Java has been added to the officially supported list of languages for which Yaydoc can generate full API documentation without any manual intervention. To extract API documentation for java source files, we used a sphinx extension named javasphinx. From the official javasphinx docs,

javasphinx is a Sphinx extension that provides a Sphinx domain for documenting Java projects and a javasphinx-apidoc command line tool for automatically generating API documentation from existing Java source code and Javadoc documentation.

javasphinx-apidoc -o source/ $ROOT_DIR/$AUTOAPI_JAVA_PATH/
sphinx-apidoc -o source/ $ROOT_DIR/$AUTOAPI_PYTHON_PATH/

For the third goal, we use the tools sphinx-apidoc and javasphinx-apidoc to generate source files.

Resources

Continue ReadingDocumenting APIs with Yaydoc

Using Flask-REST-JSONAPI’s Resource Manager In Open Event API Server

For the nextgen Open Event API Server, we are using flask-rest-jsonapi to write all the API endpoints. The flask-rest-jsonapi is based on JSON API 1.0 Specifications for JSON object responses.

In this blog post, I describe how I wrote API schema and endpoints for an already existing database model in the Open Event API Server. Following this blog post, you can learn how to write similar classes for your database models. Let’s dive into how the API Schema is defined for any Resource in the Open Event API Server. Resource, here, is an object based on a database model. It provides a link between the data layer and your logical data abstraction. This ResourceManager has three classes.

  1. Resource List
  2. Resource Detail
  3. Resource Relationship

(We’ll take a look at the Speakers API.)
First, we see the already implemented Speaker Model
 :

class Speaker(db.Model):

   """Speaker model class"""

   __tablename__ = 'speaker'

   id = db.Column(db.Integer, primary_key=True)

   name = db.Column(db.String, nullable=False)

   photo = db.Column(db.String)

   website = db.Column(db.String)

   organisation = db.Column(db.String)

   is_featured = db.Column(db.Boolean, default=False)

   sponsorship_required = db.Column(db.Text)

   def __init__(self,

                name=None,

                photo_url=None,

                website=None,

                organisation=None,

                is_featured=False,

                sponsorship_required=None):

      self.name = name

      self.photo = photo_url

      self.website = website

      self.organisation = organisation

      self.is_featured = is_featured

      self.sponsorship_required = sponsorship_required

 

Here’s the Speaker API Schema:

class SpeakerSchema(Schema):
   class Meta:
       type_ = 'speaker'
       self_view = 'v1.speaker_detail'
       self_view_kwargs = {'id': '<id>'}
   id = fields.Str(dump_only=True)
   name = fields.Str(required=True)
   photo_url = fields.Url(allow_none=True)
   website = fields.Url(allow_none=True)
   organisation = fields.Str(allow_none=True)
   is_featured = fields.Boolean(default=False)
   sponsorship_required = fields.Str(allow_none=True)
class SpeakerList(ResourceList):  
   schema = SpeakerSchema
   data_layer = {'session': db.session,
                 'model': Speaker}
class SpeakerDetail(ResourceDetail):
   schema = SpeakerSchema
   data_layer = {'session': db.session,
                 'model': Speaker}
class SpeakerRelationship(ResourceRelationship):
   schema = SpeakerSchema
   data_layer = {'session': db.session,
                 'model': Speaker}

 

Last piece of code is listing the actual endpoints in __init__ file for flask-rest-jsonapi

api.route(SpeakerList, 'speaker_list', '/events/<int:event_id>/speakers', '/sessions/<int:session_id>/speakers', '/users/<int:user_id>/speakers')
api.route(SpeakerDetail, 'speaker_detail', '/speakers/<int:id>')
api.route(SpeakerRelationship, 'speaker_event', '/speakers/<int:id>/relationships/event')
api.route(SpeakerRelationship, 'speaker_user', '/speakers/<int:id>/relationships/user')
api.route(SpeakerRelationship, 'speaker_session', '/speakers/<int:id>/relationships/sessions')

 

How to write API schema from database model?

Each column of the database model is a field in the API schema. These are marshmallow fields and can be of several data types – String, Integer, Float, DateTime, Url.

Three class definitions follow the Schema class.

  • List:
    SpeakerList class is the basis of endpoints:
api.route(SpeakerList, 'speaker_list', '/events/<int:event_id>/speakers',
          '/sessions/<int:session_id>/speakers',                                                             
          '/users/<int:user_id>/speakers')

This class will contain methods that generate a list of speakers based on the id that is passed in view_kwargs. Let’s say that ‘/sessions/<int:session_id>/speakers’ is requested. As the view_kwargs here contains sesssion_id, the query methods in SpeakerList class will fetch a list of speaker profiles related to  the sessions identified by session_id.

The flask-rest-jsonapi allows GET and POST methods for ResourceList. When using these endpoints for POST, the before_create_object and before_post methods can be written. These methods are overridden from the base ResourceList class in flask-rest-jsonapi/resource.py when they are defined in Speaker’s class.

  • Detail: 

SpeakerDetail class provides these endpoints:

 api.route(SpeakerDetail, 'speaker_detail', '/speakers/<int:id>')

The Resource Detail provides methods to facilitate GET, PATCH and DELETE requests provided for the endpoints. Methods like: before_get_object, before_update_object, after_update_object are derived from ResourceDetail class. The endpoints return an object of the resource based on the view_kwargs in a JSON response.

  • Relationship:

SpeakerRelationship class, as you might have guesses, provides:

api.route(SpeakerRelationship, 'speaker_event', '/speakers/<int:id>/relationships/event')

api.route(SpeakerRelationship, 'speaker_user', '/speakers/<int:id>/relationships/user')

api.route(SpeakerRelationship, 'speaker_session', '/speakers/<int:id>/relationships/sessions')

SpeakerRelationship class provides methods to create, update and delete relationships between the speaker and related resources – events, users and sessions in this case.

The above is a bare bone API schema example. The actual implementation in Open Event Server has lots of helper methods too to cater to our specific needs.

Additional Resources:

Continue ReadingUsing Flask-REST-JSONAPI’s Resource Manager In Open Event API Server

Documenting Open Event API Using API-Blueprint

FOSSASIA‘s Open Event Server API documentation is done using an api-blueprint. The API Blueprint language is a format used to describe API in an API blueprint file, where a blueprint file (or a set of files) is such that describes an API using the API Blueprint language. To follow up with the blueprint, an apiary editor is used. This editor is responsible for rendering the API blueprint and printing the result in user readable API documented format. We create the API blueprint manually.

Using API Blueprint:-
We create the API blueprint by first adding the name and metadata for the API we aim to design. This step looks like this :-

FORMAT: V1
HOST: https://api.eventyay.com

# Open Event API Server

The Open Event API Server

# Group Authentication

The API uses JWT Authentication to authenticate users to the server. For authentication, you need to be a registered user. Once you have registered yourself as an user, you can send a request to get the access_token.This access_token you need to then use in Authorization header while sending a request in the following manner: `Authorization: JWT <access_token>`


API blueprint starts with the metadata, here FORMAT and HOST are defined metadata. FORMAT keyword specifies the version of API Blueprint . HOST defines the host for the API.

The heading starts with # and the first heading is regarded as the name of the API.

NOTE – Also all the heading starts with one or more # symbol. Each symbol indicates the level of the heading. One # symbol followed by heading serves as the top level i.e. one # = Top Level. Similarly for  ## = second level and so on. This is in compliance with normal markdown format.
        Following the heading section comes the description of the API. Further, headings are used to break up the description section.

Resource Groups:
—————————–
    By using group keyword at the starting of a heading , we create a group of related resources. Just like in below screenshot we have created a Group Users.

# Group Users

For using the API you need(mostly) to register as an user. Registering gives you access to all non admin API endpoints. After registration, you need to create your JWT access token to send requests to the API endpoints.


| Parameter | Description | Type | Required |
|:----------|-------------|------|----------|
| `name`  | Name of the user | string | - |
| `password` | Password of the user | string | **yes** |
| `email` | Email of the user | string | **yes** |

 

Resources:
——————
    In the Group Users we have created a resource Users Collection. The heading specifies the URI used to access the resource inside of the square brackets after the heading. We have used here parameters for the resource URI which takes us into how to add parameters to the URI. Below code shows us how to add parameters to the resource URI.

## Users Collection [/v1/users{?page%5bsize%5d,page%5bnumber%5d,sort,filter}]
+ Parameters
    + page%5bsize%5d (optional, integer, `10`) - Maximum number of resources in a single paginated response.
    + page%5bnumber%5d (optional, integer, `2`) - Page number to fetchedfor the paginated response.
    + sort (optional, string, `email`) - Sort the resources according to the given attribute in ascending order. Append '-' to sort in descending order.
    + filter(optional, string, ``) - Filter according to the flask-rest-jsonapi filtering system. Please refer: http://flask-rest-jsonapi.readthedocs.io/en/latest/filtering.html for more.

 

Actions:
————–
    An action is specified with a sub-heading inside of  a resource as the name of Action, followed by HTTP method inside the square brackets.
    Before we get on further, let us discuss what a payload is. A payload is an HTTP transaction message including its discussion and any additional assets such as entity-body validation schema.

There are two payloads inside an Action:

  1. Request: It is a payload containing one specific HTTP Request, with Headers and an optional body.
  2. Response: It is a payload containing one HTTP Response.

A payload may have an identifier-a string for a request payload or an HTTP status code for a response payload.

+ Request

    + Headers

            Accept: application/vnd.api+json

            Authorization: JWT <Auth Key>

+ Response 200 (application/vnd.api+json)


Types of HTTP methods for Actions:

  • GET – In this action, we simply send the header data like Accept and Authorization and no body. Along with it we can send some GET parameters like page[size]. There are two cases for GET: List and Detail. For example, if we consider users, a GET for List helps us retrieve information about all users in the response, while Details, helps us retrieve information about a particular user.

The API Blueprint examples implementation of both GET list and detail request and response are as follows.

### List All Users [GET]
Get a list of Users.

+ Request

    + Headers

            Accept: application/vnd.api+json

            Authorization: JWT <Auth Key>

+ Response 200 (application/vnd.api+json)

        {
            "meta": {
                "count": 2
            },
            "data": [
                {
                    "attributes": {
                        "is-admin": true,
                        "last-name": null,
                        "instagram-url": null,

 

### Get Details [GET]
Get a single user.

+ Request

    + Headers

            Accept: application/vnd.api+json

            Authorization: JWT <Auth Key>

+ Response 200 (application/vnd.api+json)

        {
            "data": {
                "attributes": {
                    "is-admin": false,
                    "last-name": "Doe",
                    "instagram-url": "http://instagram.com/instagram",

 

  • POST – In this action, apart from the header information, we also need to send a data. The data must be correct with jsonapi specifications. A POST body data for an users API would look something like this:
### Create User [POST]
Create a new user using an email, password and an optional name.

+ Request (application/vnd.api+json)

    + Headers

            Authorization: JWT <Auth Key>

    + Body

            {
              "data":
              {
                "attributes":
                {
                  "email": "example@example.com",
                  "password": "password",


A POST request with this data, would create a new entry in the table and then return in jsonapi format the particular entry that was made into the table along with the id assigned to this new entry.

  • PATCH – In this action, we change or update an already existing entry in the database. So It has a header data like all other requests and a body data which is almost similar to POST except that it also needs to mention the id of the entry that we are trying to modify.
### Update User [PATCH]
+ `id` (integer) - ID of the record to update **(required)**

Update a single user by setting the email, email and/or name.

Authorized user should be same as user in request body or must be admin.

+ Request (application/vnd.api+json)

    + Headers

            Authorization: JWT <Auth Key>

    + Body

            {
              "data": {
                "attributes": {
                  "password": "password1",
                  "avatar_url": "http://example1.com/example1.png",
                  "first-name": "Jane",
                  "last-name": "Dough",
                  "details": "example1",
                  "contact": "example1",
                  "facebook-url": "http://facebook.com/facebook1",
                  "twitter-url": "http://twitter.com/twitter1",
                  "instagram-url": "http://instagram.com/instagram1",
                  "google-plus-url": "http://plus.google.com/plus.google1",
                  "thumbnail-image-url": "http://example1.com/example1.png",
                  "small-image-url": "http://example1.com/example1.png",
                  "icon-image-url": "http://example1.com/example1.png"
                },
                "type": "user",
                "id": "2"
              }
            }

Just like in POST, after we have updated our entry, we get back as response the new updated entry in the database.

  • DELETE – In this action, we delete an entry from the database. The entry in our case is soft deleted by default. Which means that instead of deleting it from the database, we set the deleted_at column with the time of deletion. For deleting we just need to send header data and send a DELETE request to the proper endpoint. If deleted successfully, we get a response as “Object successfully deleted”.
### Delete User [DELETE]
Delete a single user.

+ Request

    + Headers

            Accept: application/vnd.api+json

            Authorization: JWT <Auth Key>

+ Response 200 (application/vnd.api+json)

        {
          "meta": {
            "message": "Object successfully deleted"
          },
          "jsonapi": {
            "version": "1.0"
          }
        }


How to check after manually entering all these? We can use the
apiary website to render it, or simply use different renderer to do it. How? Checkout for my next blog on apiary and aglio.

Learn more about api blueprint here: https://apiblueprint.org/

Continue ReadingDocumenting Open Event API Using API-Blueprint

Uploading Images via APIs in the Open Event Server

APIs help us to send and receive data in some particular data format that can then be used individually or integrated with a frontend UI. In our case, the entire API server is used to manage all the requests from the frontend and send back the necessary response. Usually, the application is to send simple form data which is then stored into the backend database and a valid jsonapi response is shown. However other than normal text, url, datetime data one very important data is media files, in our case event images, user images, slides, etc. In this blog, we will particularly deal with how we can upload images in the server using API.

Sending Data

Firstly, we need to decide how do we send the data in the post request of the API. So we are sending a base64 encoded string representing the image along with the image extension appended to it, for example, . This is a widely used format for showing images over the web. So when we send a POST request we send a json encoded body like:

{
    "data": ""
}

Converting Base64 Data to Image

There are 2 parts of the data in the string that we receive. The first part basically tells us the format of the image(.gif in this case) and string encoding(base64 in this case), the second part gives us the encoded string. So, from the first part, we extract the file extension for the image file to be created. We use uuid.uuid4() for a random filename.

filename = '{}.{}'.format(str(uuid.uuid4()).data.split(";")[0].split("/")[1])

Now to write the base64 encoded string as an image file, we first need to get only the encoded string part from the data and then decode it. We use string decode function of python for the decoding purpose. Then we write the data to the image file and save it.

file.write(data.split(",")[1].decode("base64")

API Response

Finally using whatever logic you are using for serving your static files, you generate the static file path for the image saved. And then create another json encoded response which returns you the url for the saved image in the server.

{
    "url": "https://xyz.storage.com/asd/fgh/hjk/1233456.png"
}

And there you have your image uploaded and served.

Continue ReadingUploading Images via APIs in the Open Event Server

Permission Dependent Schema for Admin Settings in Open Event Server

For implementing the next version of the API in Open Event, the schema is a very important thing. It tells you exactly what all information you need to send in the body and how the response will look. In flask-rest-jsonapi, we usually mention a schema for an API which is then used for validating requests and sending response. Using decorators, we restrict who all can create, edit or get responses from a particular API endpoint. However, a scenario may so arise that you need to show data to users at different permissions level, but the amount of data shown significantly varies with the permission.

For example, for the settings API in our case. There are few informations like the app name, app tagline that we want to be available to users at all permission levels. However, informations such as aws secret key, or mailing secret keys or any other secret key, we want that to be available only to the admin and super admin. And the responses should be such that users at different permission level should feel that whatever information shown to them is complete and not missing.

So, what we do is we create different schemas, in our case 2 different schemas. Depending on the permission of the user, we show them a particular schema. In our case, the two schemas are SettingSchemaAdmin and SettingSchemaNonAdmin. In SettingSchemaAdmin, we have all the attributes or fields that are present and is accessible to the Admin and Super Admin. In the SettingSchemaNonAdmin however, we have only those fields and attributes that we want to show to all non admin users.

from flask_jwt import current_identity
 
class SettingDetail(ResourceDetail):
    """
    setting detail by id
    """
 
    def before_get(self, args, kwargs):
        kwargs['id'] = 1
        if current_identity.is_admin or current_identity.is_super_admin:
            self.schema = SettingSchemaAdmin
        else:
            self.schema = SettingSchemaNonAdmin

 

The above code helps us achieve this. If you have read previous blogs about the API server, you would already know that we are using JWT for authenticating our users. In this code, we are importing current_identity from flask_jwt. Current_identity, returns us an object of the User type which has properties such as is_admin, is_super_admin, etc. to help us identify the permission level of that user.
Using this object, we check whether the user who is making the request via jwt authentication is an admin or super admin, or just a normal registered user.

        if current_identity.is_admin or current_identity.is_super_admin:
            self.schema = SettingSchemaAdmin
        else:
            self.schema = SettingSchemaNonAdmin

 

So, if the current user sending the request is an admin, then we set the schema for the Resource manager class of the flask-rest-jsonapi as SettingSchemaAdmin, which we have already declared before containing all the fields, else, we set it as SettingSchemaNonAdmin which has limited number of attributes.

Continue ReadingPermission Dependent Schema for Admin Settings in Open Event Server

This API or that Library – which one?

Last week, I was playing with a scraper program in Loklak Server project when I came across a library Boilerpipe. There were some issues in the program related to it’s implementation. It worked well. I implemented it, pulled a request but was rejected due to it’s maintenance issues. This wasn’t the first time an API(or a library) has let me down, but this added one more point to my ‘Linear Selection Algorithm’ to select one.

Once Libraries revolutionized the Software Projects and now API‘s are taking abstraction to a greater level. One can find many API’s and libraries on GitHub or on their respective websites, but they may be buggy. This may lead to waste of one’s time and work. I am not blogging to suggest which one to choose between the two, but what to check before getting them into use in development.

So let us select a bunch of these and give score +1 if it satisfies the point, 0 for Don’t care condition and -1 , a BIG NO.

Now initialize the variable score to zero and lets begin.

1. First thing first. is it easy to understand

Does this library code belongs to your knowledge domain? Can you use it without any issue? Also consider your project’s platform compatibility with the library. If you are developing a prototype or a small software(like for an event like Hackathon), you shall choose easy-to-read tutorial as higher priority and score++. But if you are working on a project, you shouldn’t shy going an extra mile and retain the value of score.

2. Does it have any documentation or examples of implementation

It shall have to be well written, well maintained documentation. If it doesn’t, I am ok with examples. Choose well according to your comfort. If none, at least code shall be easy to understand.

3. Does it fulfill all my needs?

Test and try to implement all the methods/ API calls needed for the project. Sometimes it may not have all the methods you need for your application or may be some methods are buggy. Take care of this point, a faulty library can ruin all your hard work.

4. Efficiency and performance (BONUS POINT for this one)

Really important for projects with high capacity/performance issues.

5. See for the Apps where they are implemented

If you are in a hackathon or a dev sprint, Checking for applications working on this API shall work. Just skip the rest of the steps (except the first).

6. Can you find blogs, Stack Overflow questions and tutorials?

If yes, This is a score++

7. An Active Community, a Super GO!

Yaay! An extra plus with the previous point.

8. Don’t tell me it isn’t maintained

This is important as if the library isn’t maintained, you are prone to bugs that may pop up in  future and couldn’t be solved. Also it’s performance can never be improved. If there is no option, It is better to use it’s parts in your code so that you can work on it, if needed.

Now calculate the scores, choose the fittest one and get to work.

So with the deserving library in your hand, my first blog post here ends.

Continue ReadingThis API or that Library – which one?

Creating an API in PHP

One of the key components of my GSoC Project was to have a POST API for the Android App generator.

This was required so that the app generator could be plugged into the server and can be called directly instead of someone manually visiting the webpage and entering his/her details.

It takes in a JSON input and compiles and emails the app to the organizer based on his email address in the input JSON.

The input to the API will look something like this :

{
“email”: “harshithdwivedi@gmail.com”,
“app_name”: “MyApp”,
“endpoint”: “https://open-event-dev.herokuapp.com/api/v2
}

Once the data is sent, on the server I have a php file which intercepts the requests and performs an action based on the request.

<?php
function sendResponse($data) {
    header('Content-type: application/json');
    echo json_encode($data);
    die();
}
/* If the request isn't a POST request then send an error message*/
if ($_SERVER['REQUEST_METHOD'] != 'POST') {
    sendResponse([
        "status"=>"error",
        "code"=>405,
        "message"=>"Method Not Allowed",
    ]);
}
/* Store the input received in a variable named body */
$body = json_decode(file_get_contents('php://input'), true);
/* If the user is nissing any important input parameters, don't process the request */
if (!array_key_exists('email', $body) || !array_key_exists('app_name', $body) || !array_key_exists('endpoint', $body)) {
    sendResponse([
        "status"=>"error",
        "code"=>422,
        "message"=>"Unprocessable entity",
    ]);
}
$uid = mt_rand(1000,9999). "_" .time();  //A random User ID
/* Extracting variables from the body */
$email = escapeshellcmd($body['email']);
$appName = escapeshellcmd($body["app_name"]); 
$endpoint = escapeshellcmd($body["endpoint"]);

/* Run a script based on the input parameters */
exec("sudo python /var/www/html/api/appgenserver.py $email $appName $endpoint");

The code above is pretty much self explanatory.

So basically, first we check for a valid request (GET/POST) and throw an error if it is invalid.

Next up, for a valid request we store the body into a variable and then execute a followup script as per our needs using data from this response.

This PHP file should be located in the public-html (/var/www/data) of the server so as to be accessible from outside of the server.

You can test out this API by calling it directly by prepending the server’s ip address to the name of php file containing this code.

Something like :

domain-name.com/api/api.php

You can also use Postman for Chrome or RESTClient for Firefox for making API calls easily.

Well, that’s it then!

You can easily modify the PHP code provided and modify it to suite your needs for making you own API.

Let me know your thoughts and your queries in the “response” 😉 below.

Until next time.

Continue ReadingCreating an API in PHP

Autocomplete Address Form using Google Map API

Google map is one of the most widely used API of Google as most of the websites use Google map for showing address location. For a static address it’s pretty simple. All you need to do is mention the address and the map will show the nearest location. Problem arrives when the address is dynamically putted by the user. Suppose for an event in event organizer server, one enters the location. The main component used while taking input location is Google Autocomplete. But we went a step further and parsed the entire address based on city, state, country, etc. and allowed user to input the details as well which gave them the nearest location marked in Map if autocomplete couldn’t find the address.

Autocomplete Location

Screenshot from 2016-07-27 06:52:37

As we can see, in the above input box we get suggestions by Google Map on entering first few letters of our address. To this, we need the API https://maps.googleapis.com/maps/api/js?key=YOUR_API_KEY&libraries=places&callback=initMap. You can find an example code of how to do this here.

After this is done, what we wanted is not to just include this address, but to provide a form to fill up the entire address in case some parts were missing on this address. The function that the autocomplete listens to is “place_changed” . So once we click on one of the options, this event is triggered. Once the event is triggered, we use the autocomplete.getPlace() to get the complete address json. The json looks something like this:

Screenshot from 2016-07-27 07:04:49

Now what we do is we create a form with input fields having the id same as the ones we require(e.g., country, administrative_area_level_1, locality, etc.). After that we select the long_name or the short_name from this json and put the value in the corresponding input field with the ids. The code for the process after getting the json is elaborated here.

Editing Address Form

After doing this it looks something like this:
Screenshot from 2016-07-27 07:12:13

However, now the important part is to show the map according to this fields. Also, every time we update a field, the map should be updated. For this we use a hack. Instead of removing the initial location field completely, we hide the field but keep the binding to autocomplete intact. As a result the map is shown when we select a particular address.

Now when we update the fields in the address form, we append the value of this field to the value in the initial location field. Though the field is hidden but it is still bound to autocomplete. As a result as soon as we append something to the string contained in the field, the map gets updated. Also, the updated value gets stored to the DB. Thus, with every update in field, the pointer is moved to the nearest location formed by appending all the data from the form.

After saving the location data to DB, if we wish to edit it, we can get back the json by making the same request with the location value. And then we will get back the same address form and the map accordingly.

Finally it looks something like this:

Screenshot from 2016-07-27 07:19:56

Continue ReadingAutocomplete Address Form using Google Map API

Google Maps Api

OpenEvent uses it everywhere. Let me explain it.

The first problem that we faced was user current location.

We wanted to get location based on geolocation method then display this results on the map.

To get geolocation we use HTML5. Take a look on geolocate() function

 

function geolocate() {

        if (navigator.geolocation) {

            navigator.geolocation.getCurrentPosition(function (position) {

            }

        }

    }

 

From variable position you can get longitude and latitude params. These values allow us to move marker on the map on right position and get the name of user current location. Based on these data we are able to find the closest events and display it in a distance order.

To get information about city or country location you have to execute a simple GET request to google MAPS. In that case you need:

 

curl http://maps.googleapis.com/maps/api/geocode/json?latlng=17.0112,15.06

 

above result returns json file where you can find name of location: Nguigmi, Niger

 

Then, we faced a new challenge- we had to choose which map would be better for OpenEvent – Open Street Map or Google Maps. Finally we have chosen google maps because it wa more comfortable for our team.

 

OpenEvent simple searching engine is based on latitude and longitude params. So we transform all requests which contain city or country names to longitude and latitude params using Google Api. It allows us to avoid having problems with different locations’ names which occur in different nationalities.

 

Continue ReadingGoogle Maps Api

How can you get an access to Instagram API?

unnamed.png

First of all you need to know that Instagram API uses OAuth 2.0 protocol. OAuth 2.0 provides a specific authorization flow for web apps, desktop apps and mobile apps. Instagram requires authentication before getting information from their API, but don’t be afraid it’s very simple.

Pre Requirements:

  • Created account in Instagram
  • Registered Client(You can create your own client here)

Instagram Developer Documentation.png

Requirements:

CLIENT_ID -79e1a142dbeabd57a3308c52ad43e31d
CLIENT_SECRET -34a6834081c44c20bd11e0a112a6adg1
REDIRECT_URI - http://127.0.0.1:8001/iCallback

You can get above information from https://www.instagram.com/developer/clients/manage/

CODE - You need to open page https://api.instagram.com/oauth/authorize/?client_id=CLIENT-ID&redirect_uri=REDIRECT-URI&response_type=code
https://api.instagram.com/oauth/authorize/?client_id=79e1a142dbeabd57a3308c52ad43e31d&redirect_uri=http://127.0.0.1:8001/iCallback&response_type=code

You will be redirected to

http://your-redirect-uri?code=CODE

In my case it looks like this:

http://127.0.0.1:8001/iCallback?code=2e122f3d76e8125b8b4982f16ed623c2

Now we have all information to get access token!

 curl -F 'client_id=CLIENT_ID'  
      -F 'client_secret=CLIENT_SECRET' 
      -F 'grant_type=authorization_code'  
      -F 'redirect_uri=REDIRECT_URI' 
      -F 'code=CODE'  https://api.instagram.com/oauth/access_token

if everything is ok you should receive

 { "access_token": "fb2e77d.47a0479900504cb3ab4a1f626d174d2d",
   "user": { "id": "1574083",
   "username": "rafal_kowalski",
   "full_name": "Rafal Kowalski",
   "profile_picture": "..." } } 

In Open Event we used it to get all media from instagram – to use it  as for example a background in an event details’ page

curl 'https://api.instagram.com/v1/users/self/media/recent/?access_token=ACCESS_TOKEN'

 

Continue ReadingHow can you get an access to Instagram API?