Integrating Travis CI and Codacy in PSLab Repositories

Continuous Integration Testing and Automated Code Review tools are really useful for developing better software, improving code and overall quality of the project. Continuous integration can help catch bugs by running tests automatically and to merge your code with confidence.

While working on my GsoC-16 project, my mentors guided and helped me to integrate Travis CI and Codacy in PSLab github repositories. This blog post is all about integrating these tools in my github repos, problems faced, errors occurred and the test results.

travisTravis CI is a hosted continuous integration and deployment system. It is used to build and test software projects hosted on github. There are two versions of it, travis-ci.com for private repositories, and travis-ci.org for public repositories.

Read : Getting started with Travis CI

Travis is configured with the “.travis.yml” file in your repository to tell Travis CI what to build. Following is the code from ‘.travis.yml‘ file in our PSLab repository. This repo contains python communication library for PSLab.

language: python
python:
  - "2.6"
  - "2.7"
  - "3.2"
  - "3.3"
  - "3.4"
# - "3.5"
# command to install dependencies
# install: "pip install -r requirements.txt"
# command to run tests
script: nosetests

With this code everything worked out of the box (except few initial builds which errored because of missing ‘requirements.txt‘ file) and build passed successfuly 🙂 🙂

Later Mario Behling added integration to FOSSASIA Slack Channel.

Slack notifications

Travis CI supports notifying  Slack channels about build results. On Slack, set up a new Travis CI integration. Select a channel, and you’ll find the details to paste into your ‘.travis.yml’. Just copy and paste the settings, which already include the proper token and you’re done.

The simplest configuration requires your account name and the token.

notifications:
  slack: '<account>:<token>'     
notifications:
  slack: fossasia:***tokenishidden****

Import errors in Travis builds of PSLab-apps Repository

PSLab-apps repository contains PyQt bases apps for various experiments. The ‘.travis.yml‘ file mentioned above gave several module import errors.

$ python --version
Python 3.2.5
$ pip --version
pip 6.0.7 from /home/travis/virtualenv/python3.2.5/lib/python3.2/site-packages (python 3.2)
Could not locate requirements.txt. Override the install: key in your .travis.yml to install dependencies.
0.33s$ nosetests
E
======================================================================
ERROR: Failure: ImportError (No module named sip)

The repo is installable and PSLab was working fine on popular linux distributions without any errors. I was not able to find the reason for build errors. Even after adding proper ‘requirements.txt‘ file,  travis builds errored.

On exploring the documentation I could figure out the problem.

Travis CI Environment uses separate virtualenv instances for each Python version. System Python is not used and should not be relied on. If you need to install Python packages, do it via pip and not apt. If you decide to use apt anyway, note that Python system packages only include Python 2.7 libraries (default python version). This means that the packages installed from the repositories are not available in other virtualenvs even if you use the –system-site-packages option. Therefore I was getting Import module errors.

This problem was solved by making following changes in the ‘.travis.yml‘ file

language: python

python:
  #- "2.6"
  - "2.7"
  #- "2.7_with_system_site_packages"
  - "3.2"
  #- "3.2_with_system_site_packages"
  - "3.3"
  - "3.4"
before_install:
    - sudo mkdir -p /downloads
    - sudo chmod a+rw /downloads
    - curl -L http://sourceforge.net/projects/pyqt/files/sip/sip-4.16.5/sip-4.16.5.tar.gz -o /downloads/sip.tar.gz 
    - curl -L http://sourceforge.net/projects/pyqt/files/PyQt4/PyQt-4.11.3/PyQt-x11-gpl-4.11.3.tar.gz -o /downloads/pyqt4.tar.gz
    # Builds
    - sudo mkdir -p /builds
    - sudo chmod a+rw /builds

install:
    - export DISPLAY=:99.0
    - sh -e /etc/init.d/xvfb start
    - sudo apt-get install -y libqt4-dev
    - sudo apt-get install -y mesa-common-dev libgl1-mesa-dev libglu1-mesa-dev
#    - sudo apt-get install -y python3-sip python3-sip-dev python3-pyqt4 cmake
    # Qt4
    - pushd /builds
    # SIP
    - tar xzf /downloads/sip.tar.gz --keep-newer-files
    - pushd sip-4.16.5
    - python configure.py
    - make
    - sudo make install
    - popd
    # PyQt4
    - tar xzf /downloads/pyqt4.tar.gz --keep-newer-files
    - pushd PyQt-x11-gpl-4.11.3
    - python configure.py -c --confirm-license --no-designer-plugin -e QtCore -e QtGui -e QtTest
    - make
    - sudo make install
    - popd
 # - "3.5"
# command to install dependencies
#install: "pip install -r requirements.txt"
# command to run tests
script: nosetests

notifications:
  slack: fossasia:*****tokenishidden*******


codacy

Codacy is an automated code analysis and review tool that helps developers ship better software, faster. With Codacy integration one can get static analysis, code complexity, code duplication and code coverage changes in every commit and pull request.

Read : Integrating Codacy in github is here.

Codacy integration has really helped me to understand and enforce code quality standard. Codacy gives you impact of every pull request in terms of quality and errors directly into GitHub.

codacy check

Codacy also grades your project in different categories like Code Complexity, Compatibility, security, code style, error prone etc. to help you better understand the overall project quality and what are the areas you should improve.

Here is a screen-shot of Codacy review for PSLab-apps repository.

codacyreport

I am extremely happy to share that my learning adventure has got  Project Certification at ‘A’ grade. Project quality analysis shows that more than 90% of the work has A grade 🙂 🙂

Travis CI and Codacy Badges for my GSoC Repositories:

PSLab : Python Library for Communication with PSLab

Travis CI Badge         Codacy Badge

PSLab-apps : Qt based GUI applications for PSLab

Travis CI Badge         Codacy Badge

Pocket Science Lab : ExpEYES Programs, Sensor Plugins

Travis CI Badge         Codacy Badge

That’s all for now. Have a happy coding, testing and learning 🙂 🙂

Unit Testing and Travis

Tests are an important part of any software development process. We need to write test codes for any feature that we develop to check if that feature is working properly.
In this post, I am gonna talk about writing Unit tests and running those test codes.

If you are a developer, I assume you have heard about unit tests. Most of you probably even wrote one in your life. Unit testing is becoming more and more popular in software development. Let’s first talk about what Unit testing is:

What is unit testing?

Unit testing is the process through which units of source code are tested to verify if they work properly. Performing unit tests is a way to ensure that all functionalities of an application are working as they should. Unit tests inform the developer when a change in one unit interferes with the functionality of another. Modern unit testing frameworks are typically implemented using the same code used by the system under test. This enables a developer who is writing application code in a particular language to write their unit tests in that language as well.

What is a unit testing framework?

Unit testing frameworks are developed for the purpose of simplifying the process of unit-testing. Those frameworks enable the creation of Test Fixtures, which are classes that have specific attributes enabling them to be picked up by a Test Runner.

Although it is possible to perform unit tests without such a framework, the process can be difficult, complicated and very manual.

There are a lot of unit testing frameworks available. Each of the frameworks has its own merits and selecting one depends on what features are needed and the level of expertise of the development team. For my project, Engelsystem I choose PHPUnit as the testing framework.

PHPUnit

With PHPUnit, the most basic thing you’ll write is a test case. A test case is just a term for a class with several different tests all related to the same functionality. There are a few rules you’ll need to worry about when writing your cases so that they’ll work with PHPUnit:

  • The test class would extend the PHPUnit_Framework_TestCase class.
  • The test parameters will never receive any parameters.

Below is an example of a test code from my project, Engelsystem

<?php

class ShiftTypes_Model_test extends PHPUnit_Framework_TestCase {

private $shift_id = null;

public function create_ShiftType(){
$this->shift_id = ShiftType_create('test', '1', 'test_description');
}

public function test_ShiftType_create() {
$count = count(ShiftTypes());
$this->assertNotFalse(create_ShiftType($shift_id));

// There should be one more ShiftTypes now
$this->assertEquals(count(ShiftTypes()), $count + 1);
}

public function test_ShiftType(){
$this->create_ShiftType();
$shift_type = ShiftType($this->shift_id);
$this->assertNotFalse($shift_type);
$this->assertTrue(count(ShiftTypes()) > 0);
$this->assertNotNull($shift_type);
$this->assertEquals($shift_type['name'], 'test');
$this->assertEquals(count(ShiftTypes()), 0);
$this->assertNull(ShiftTypes(-1));
}

public function teardown() {
if ($this->shift_id != null)
ShiftType_delete($this->shift_id);
}

}

?>

We can use different Assertions to test the functionality.

We are running these tests on Travis-CI

What is Travis-CI?

Travis CI is a hosted, distributed continuous integration service used to build and test software projects hosted on GitHub.

Open source projects may be tested at no charge via travis-ci.org. Private projects may be tested at the same location on a fee basis. TravisPro provides custom deployments of a proprietary version on the customer’s own hardware.

Although the source is technically free software and available piecemeal on GitHub under permissive licenses, the company notes that it is unlikely that casual users could successfully integrate it on their own platforms.

To get started with Travis-CI, visit the following link, Getting started with Travis-CI.

We are developing new feature for Engelsystem.  Developers who are interested in contributing can work with us.

Development: https://github.com/fossasia/engelsystem             Issues/Bugs:https://github.com/fossasia/engelsystem/issues

Testing Docker Deployment using Travis

Hello. This post is about how to setup automated tests to check if your application’s docker deployment is working or not. I used it extensively while working on the Docker deployment of the Open Event Server. In this tutorial, we will use Travis CI as the testing service.

To start testing your github project for Docker deployment, first add the repo to Travis. Then create a.travis.yml in the project’s root directory.

In that file, add docker to services.

services:
  - docker

The above will enable docker in the testing environment. It will also include docker-compose by default.

Next step is to build your app and run it. Since this is a pre-testing step, we will add it in the install directive.

install:
  - docker build -t myapp .
  - docker run -d -p 127.0.0.1:80:4000 --name myapp myapp

The 4000 in the above text is assuming your app runs on port 4000 inside the container. Also it is assumed that Dockerfile is in the root of the repo.

So now that the docker app is running, it’s time to test it.

script:
  - docker ps | grep -i myapp

The above will test if our app is in one of the running docker processes. It is a basic test to see if the app is running or not.

We can go ahead and test the app’s functionality with some sample requests. Create a file test.py with the following contents.

import requests

r = requests.get('http://127.0.0.1/')
assert 'HomePage' in r.content, 'No homepage loaded'

Then run it as a test.

script:
  - docker ps | grep -i myapp
  - python test.py

You can make use of the unittest module in Python to bundle and create more organized tests. The limit is the sky here.

In the end, the .travis.yml will look something like the following

language: python
python:
  - "2.7"

install:
  - docker build -t myapp .
  - docker run -d -p 127.0.0.1:80:4000 --name myapp myapp

script:
  - docker ps | grep -i myapp
  - python test.py

So this is it. A basic tutorial on testing Docker deployments using the awesome Travis CI service.

Feel free to share it and comment your views.

 

{{ Repost from my personal blog http://aviaryan.in/blog/gsoc/docker-test.html }}

Unit Testing

There are many stories about unit testing. Developers sometimes say that they don’t write tests because they write a good quality code. Does it make sense, if no one is infallible?.

At studies only a  few teachers talk about unit testing, but they only show basic examples of unit testing. They require to write a few tests to finish final project, but nobody really  teaches us the importance of unit testing.

I have also always wondered what benefits can it bring. As time is a really important factor in our work it often happens that we simply resign of this part of process development to get “more time” rather than spend time on writing stupid tests. But now I know that it is a vicious circle.

Customers requierments does not help us. They put a high pressure to see visible results not a few statistics about coverage status. None of them cares about some strange numbers. So, as I mentioned above, we usually focuses on building new features and get riid of tests. It may seem to save time, but it doesn’t.

In reality tests save us a lot of time because we can identify and fix bugs very quickly. If a bug ocurrs because someone’s change we don’t have to spend long hours trying to figure out wgat is going out. That’s why we need tests.  

It is especially visible in huge open source projects. FOSSASIA organization has about 200 contributors. In OpenEvent project we have about 20 active developers, who generate many lines of code every single day. Many of them change over and over again as well as interfere  with each other.

Let me provide you with a simple example. In our team we have about 7 pull requests per day. As I mentioned above we want to make our code high quality and free of bugs, but without testing identifying if pull request causes a bug is very difficult task. But fortunately this boring job makes Travis CI for us. It is a great tool which uses our tests and runs them on every PR  to check if bugs occur. It helps us to quickly notice bugs and maintain our project very well.

What is unit testing?

Unit testing is a software development method in which the smallest testable parts of an application are tested

Why do we need writing unit tests?

Let me point all arguments why unit testing is really important while developing a project.

  • To prove that our code works properly

If developer adds another condition, test checks if method returns correct results. You simply don’t need to wonder if something is wrong with you code.

  • To reduce amount of bugs

It let you to know what inputs params’ function should get and what results should be returned. You simply don’t  write unused code

  • To save development time

Developers don’t waste time on checking every code’s change if his code works correctly

  • Unit tests help to understand software design
  • To provide quick feedback about method which you are testing
  • To help document a code

How to write unit test in Python

In my work I write use tests in Python. I am going to share my sample code  with you now

  • Import module unittest
  • Choose function to test
  • Write unit test

Example OpenEvent test in Python

class TestPagesUrls(OpenEventTestCase):

   def setUp(self):

       self.app = Setup.create_app()

   def test_if_urls_exist(self):

       """Test all urls via GET method"""

       with app.test_request_context():

           for rule in app.url_map.iter_rules():

               if excluded_paths(rule):

                   status_code = self.app.get(request.url[:-1] + str(rule).replace('//', '/'),        follow_redirects=True).status_code

                   self.assertTrue(status_code in [200, 302, 401])

 

I want to check if all views exist but it required a lot of time. That’s why I wonder I how to avoid writing similar tests. Finally, based  on our list of routes I am able to write test which checks code’s status  on every page.

If some of them response returns status_code different than 200, 302 or 401, test fails.This results means that somethings is wrong. Simple, isn’t it ?  Try to test it manually…. This one short test cover about 40 use cases…

This example shows an incredible value of unit tests! If developer makes a bug in response he receives an error that something is wrong with a view. Travis CI allows to reject all  wrong pull requests and merge only these which fulfill our quality requirements.   

Fixing  error is one part but finding a bug is even harder task. But an ability to detect bug on early stage of process development reduces cost of software.

 

Push your apk to your GitHub repository from Travis

In this post I’ll guide you on how to directly upload the compiled .apk from travis to your GitHub repository.

Why do we need this?

Well, assume that you need to provide an app to your testers after each commit on the repository, so instead of manually copying and emailing them the app, we can setup travis to upload the file to our repository where the testers can fetch it from.

So, lets get to it!

Step 1 :

Link Travis to your GitHub Account.

Open up https://travis-ci.org.

Click on the green button in the top right corner that says “Sign in with GitHub”

screenshot-area-2016-07-15-205733.png<

Step 2 :

Add your existing repository to Travis

Click the “+” button next to your Travis Dashboard located on the left.

screenshot-area-2016-07-15-210630.png<

Choose the project that you want to setup Travis from the next page

screenshot-area-2016-07-15-210916.png
Toggle the switch for the project that you want to integrate

Click the cog here and add an Environment Variable named GITHUB_API_KEY.
Proceed by adding your Personal Authentication Token there.
Read up here on how to get the Token.

 screenshot-area-2016-07-15-213931.png<

Great, we are pretty much done here.

Let us move to the project repository that we just integrated and create a new file in the root of repository by clicking on the “Create new file” on the repo’s page.

Name it .travis.yml and add the following commands over there

language: android 
jdk:
  - oraclejdk8
android:
  components:
    - tools
    - build-tools-24.0.0
    - android-24
    - extra-android-support
    - extra-google-google_play_services
    - extra-android-m2repository
    - extra-google-m2repository
    - addon-google_apis-google-24
 before_install:
 - chmod +x gradlew
 - export JAVA8_HOME=/usr/lib/jvm/java-8-oracle
 - export JAVA_HOME=$JAVA8_HOME
 after_success:
 - chmod +x ./upload-gh-pages.sh
 - ./upload-apk.sh
 script:
 - ./gradlew build

Next, create a bash file in the root of your repository using the same method and name it upload-apk.sh

  #create a new directory that will contain out generated apk
  mkdir $HOME/buildApk/ 
  #copy generated apk from build folder to the folder just created
  cp -R app/build/outputs/apk/app-debug.apk $HOME/android/
  #go to home and setup git
  cd $HOME
  git config --global user.email "[email protected]"
  git config --global user.name "Your Name" 
  #clone the repository in the buildApk folder
  git clone --quiet --branch=master  https://user-name:[email protected]/user-name/repo-name  master > /dev/null
  #go into directory and copy data we're interested
  cd master  cp -Rf $HOME/android/* .
  #add, commit and push files
  git add -f .
  git remote rm origin
  git remote add origin https://user-name:[email protected]/user-name/repo-name.git
  git add -f .
  git commit -m "Travis build $TRAVIS_BUILD_NUMBER pushed"
  git push -fq origin master > /dev/null
  echo -e "Donen"

Once you have done this, commit and push these files, a Travis build will be initiated in few seconds.
You can see it ongoing in your Dashboard at https://travis-ci.org/.

After the build has completed, you will can see an app-debug.apk in your Repository.

IMPORTANT NOTE :

You might be wondering as to why did I write [skip ci] in the commit message.

Well the reason for that is, Travis starts a new build as soon as it detects a commit made on the master branch of your repository.

So once the apk is uploaded, that will trigger another build in Travis and hence forming an infinite loop.

We can prevent this in 2 ways :

First, simply write [skip ci] somewhere in the commit message and it will cause Travis to ignore the commit.

Or, push the apk to any other branch which is not configured for Travis build.

So well, that’s almost it.

I hope that you found this tutorial helpful, and if you have any doubts regarding this feel free to comment down below, I would love to help you out.

Cheers.