Filtering List with Search Manager in Connfa Android App

It is a good practice to provide the facility to filter lists in Android apps to improve the user experience. It often becomes very unpleasing to scroll through the entire list when you want to reach a certain data point. Recently I modified Connfa app to read the list of speakers from the Open Event Format. In this blog I describe how to add filtering facility in lists with Search Manager.

First, we declare the search menu so that the widget appears in it.

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="">
    <item android:id="@+id/search"
        android:showAsAction="collapseActionView ifRoom"
        android:actionViewClass="android.widget.SearchView" />

In above menu item the collapseActionView attribute allows your SearchView to expand to take up the whole action bar and collapse back down into a normal action bar item when not in use. Now we create the SearchableConfiguration which defines how SearchView behaves.

<?xml version="1.0" encoding="utf-8"?>
    android:hint="Search friend">

Also add this to the activity that will be used with <meta-data> tag in the manifest file. Then associate searchable configuration with the SearchView in the activity class

public boolean onCreateOptionsMenu(Menu menu) {
    MenuInflater inflater = getMenuInflater();
    inflater.inflate(, menu);

    SearchManager searchManager = (SearchManager)
    searchMenuItem = menu.findItem(;
    searchView = (SearchView) searchMenuItem.getActionView();


    return true;

Implement SearchView.OnQueryTextListener in activity, need to override two new methods now

public boolean onQueryTextSubmit(String searchText) {
  return true;

public boolean onQueryTextChange(String searchedText) {

   if (mSpeakersAdapter != null) {
       lastSearchRequest = searchedText;
   return true;

Find the complete implementation here. In the end it will look like this,



Android Search View documentation –

Using Data Access Object to Store Information

We often need to store the information received from the network to retrieve that later. Although we can store and read data directly but by using data access object to store information enables us to do data operations without exposing details of the database. Using data access object is also a best practice in software engineering. Recently I modified Connfa app to store the data received in Open Event format. In this blog, I describe how to use data access object.

The goal is to abstract and encapsulate all access to the data and provide an interface. This is called Data Access Object pattern. In a nutshell, the DAO “knows” which data source (that could be a database, a flat file or even a WebService) to connect to and is specific for this data source. It makes no difference in applications when it accesses a relational database or parses xml files (using a DAO). The DAO is usually able to create an instance of a data object (“to read data”) and also to persist data (“to save data”) to the datasource.

Consider the example from Connfa app in which get the tracks from API and store them in SQL database. We use DAO to create a layer between model and database. Where AbstractEntityDAO is an abstract class which have the functions to perform CRUD operation. We extend it to implement them in our DAO model. Here is TrackDAO structure,

public class TrackDao extends AbstractEntityDAO<Track, Long> {

    public static final String TABLE_NAME = "table_track";

 [email protected]
    protected String getSearchCondition() {
        return "_id=?";

Find the complete class to see the detailed methods to implement search conditions, get key columns, create instance etc.  here.

Here is a general method to get the data from the database. Where getFacade() for the given layer element, this method returns the requested facade object to represent the passed in layer element.

public List<ClassToSave> getAllSafe() {
   ILAPIDBFacade facade = getFacade();
   try {;
       return getAll();

   } finally {

Now we can create an instance to use these methods instead of directly using SQL operations. This functions gets the data and sort it accordingly.

private TrackDao mTrackDao;
 public List<Track> getTracks() {
   List<Track> tracks = mTrackDao.getAllSafe();
   Collections.sort(tracks, new Comparator<Track>() {
 [email protected]
       public int compare(Track track, Track track2) {
           return, track2.getOrder());
   return tracks;



Receiving Data From the Network Asynchronously

We often need to receive information from networks in Android apps. Although it is a simple process but the problem arises when it is done through the main user interaction thread. To understand this problem better consider using an app which shows some text downloaded from the online database. As the user clicks a button to display a text it may take some time to get the HTTP response. So what does an activity do in that time? It creates a lag in the user interface and makes the app to stop responding. Recently I implemented this in Connfa App to download data in Open Event Format.

To solve that problem we use concurrent thread to download the data and send the result back to be processed separating it from main user interaction thread. AsyncTask allows you to perform background operations and publish results on the UI thread without having to manipulate threads and/or handlers.

AsyncTask is designed to be a helper class around Thread and Handler and does not constitute a generic threading framework. AsyncTasks should ideally be used for short operations (a few seconds at the most). If you need to keep threads running for long periods of time, it is highly recommended you use the various APIs provided by the java.util.concurrent package such as Executor, ThreadPoolExecutor and FutureTask.

An asynchronous task is defined by a computation that runs on a background thread and whose result is published on the UI thread. An asynchronous task is defined by 3 generic types, called Params, Progress and Result, and 4 steps, called onPreExecute, doInBackground, onProgressUpdate and onPostExecute.

In this blog, I describe how to download data in an android app with AsyncTask using OkHttp library.

First, you need to add dependency for OkHttp Library,

compile 'com.squareup.okhttp:okhttp:2.4.0' 

Extend AsyncTask class and implement all the functions in the class by overriding them to modify them accordingly. Here I declare a class named AsyncDownloader extending AsyncTask. We took the string parameter, integer type progress and string type result to return instead which will be our JSON data and param is our URL. Instead of using get the function of AsyncTask we implement an interface to receive data so the main user interaction thread does not have to wait for the return of the result.

public class AsyncDownloader extends AsyncTask<String, Integer, String> {
    private String jsonData = null;

    public interface JsonDataSetter {
        void setJsonData(String str);

    JsonDataSetter jsonDataSetterListener;

    public AsyncDownloader(JsonDataSetter context) {

        this.jsonDataSetterListener = context;

 [email protected]
    protected void onPreExecute() {

 [email protected]
    protected String doInBackground(String... params) {

        String url = params[0];

        OkHttpClient client = new OkHttpClient();
        Request request = new Request.Builder()
        Call call = client.newCall(request);

        Response response = null;

        try {
            response = call.execute();

            if (response.isSuccessful()) {
                jsonData = response.body().string();

            } else {
                jsonData = null;

        } catch (IOException e) {

        return jsonData;

 [email protected]
    protected void onPostExecute(String jsonData) {

We download the data in doInBackground making a request using OkHttp library and send the result back in onPostExecute method using our interface method. See above to check out the complete class implementation.

You can make an instance to AsyncDownloader in an activity. Implement interface to receive that data.

Tip: Always close AsyncTask after using to avoid many concurrent tasks at one time.

Find the complete code here.


Displaying Multiple Markers on Map

Connfa and Open Event Android app provide the facility to see the locations on Google map by displaying the marker on places where the sessions will be taking place. As there are many sessions in a conference we need to display marker for each location. In this blog, we learn how to display multiple markers on a map using Google map API with the reference of Connfa app.
First, you need to set up the Google map API in your app. Find the detailed tutorial for that here where you can follow to get an API key and you’ll need a Gmail account for that. Then you can define a fragment like this in your XML layout where the map will appear.

   android:background="@android:color/white" />

Now you can define the in the fragment to make map in this FrameLayout named “fragmentHolder”,

private void replaceMapFragment() {
   CustomMapFragment mapFragment = CustomMapFragment.newInstance(LocationFragment.this);
           .replace(, mapFragment)

We receive the data about locations in a List containing longitude, latitude, name and room number of the locations. Find the sample result in Open Event format. Here is how we fill in the locations,

for (int i = 0; i < locations.size(); i++) {
   Location location = locations.get(i);
   LatLng position = new LatLng(location.getLat(), location.getLon());
   mGoogleMap.addMarker(new MarkerOptions().position(position));

   if (i == 0) {
       CameraPosition camPos = new CameraPosition(position, ZOOM_LEVEL, TILT_LEVEL, BEARING_LEVEL);

The CameraPostition defines the properties like Zoom level which can be adjusted by changing the parameters. You can define the like this,

private static final int ZOOM_LEVEL = 15;
private static final int TILT_LEVEL = 0;
private static final int BEARING_LEVEL = 0;

Find the complete implementation here. Here is the screenshot for the final result.


  • Google Map APIs Documentation –