DesignaKnit

I started a conversation on strickforum.de and was inspired to take a closer look at DesignaKnit 8.

A free Demo version of DesignaKnit is available which cannot save changes to patterns or shapes and cannot connect to a knitting machine. Otherwise all functionality is available.

DesignaKnit contains:

  • an editor for color patterns
  • an editor for shapes or sewing patterns
  • a shape library
  • a tool for converting images to patterns
  • interactive knitting

Patterns can be applied to shapes.

I did not look very closely at the editors because I do not know much about pattern generation, especially shape or sewing patterns. And the editor for the color patterns did not work for me.

Interactive Knitting:
I took a look at some of the features available in the interactive knitting. There are some interesting features we would also like to implement.

I was not able to take in all the functions available. I could not connect it to a machine and I am still a beginner with knitting machines, which is why I am probably missing some features which make life easier.

The interactive knitting support has several views:

  • overview of knit piece which also shows the position of the carriage
  • view for next row to be knit, some rows around for context
  • view for yarn colors in use and visualization that shows which yarn is currently in the carriage and being knit
  • view for instructions to the human, which also contains
    • row counter as it should be on the machine
    • counter for row in the piece being knit
    • counter for row in pattern
    • information on start and stop needle on machine

DesignaKnit

DesignaKnit can be configured to play sounds when an action, like decreasing the number of meshes, needs to be taken. Voice cuing is also possible. Furthermore, the view for the instructions for the human can flash yellow and displays what step needs to be completed by the human next. In the image above the number of meshes should be decreased by 6 on the right side.

Ideas for our interactive knitting support:
The idea of extra audio and visual cuing is very interesting and we are considering also having this option in our interface. We are not yet sure how we will organize all the information, but the information we will show to the user will be similar to what is shown in DesignaKnit.

The interface for DesignaKnit serves its purpose well. However, we think we can create something that is a little more appealing to the eye.
To keep our Design of the user interface clean and simple we are designing for mobile devices first.

 

A look into the knitting pattern format

We are currently working on a format that allows to exchange instructions for knitting independent of how it is going to be knit: by a machine like Brother, Pfaff, or by hand.

For this to be possible we need the format to be as general as possible and have no ties to a specific form of knitting. At some point the transition to a format specifically designed for a certain machine is necessary. However, we believe that it is possible to have a format so general that instructions for all types of machines and for hand knitting could be generated from it.

We have decided to use JSON as the language to describe the format, because it is machine readable and human readable at the same time.
The structure of our format follows the rows in knitting.

Our first thought was about creating a format that would describe how meshes are connected and how the thread travels. This would allow for great flexibility and it should be possible to represent everything like this. However, we have decided against it, because we think this format would be quite complicated (different orientations and twists of meshes possible, different threads for multiple colors…) and would get quite big very quickly, because of all the different properties for each mesh and because of all the meshes. Furthermore, and this point is probably more important, knitters do not think this way. If we had a format like that, it would not be easy to understand what was happening for human beings.

Whenever I knit by hand, I never think about how all the meshes are connected by this single thread I am using. I always think about which operations I am performing when knitting in each row. Instructions for creating patterns in knitting are also written this way. They give the knitter a set of knitting instructions to do and possibly repeat. We have concluded, that most knitters think in knitting operations performed rather than connections between meshes.

17-diag

Knitting instructions from Garnstudio’s Café.

Therefore we have decided to base our format on knitting instructions/operations. The most common instructions probably are: knit, purl, cast on, bind off, knit two together, yarn over. Of course for increases and decreases there are many different operations which work in a similar way but have slight differences (e.g. skp, k2tog).
Since in knitting many things are possible and it is unlikely that we ever manage to create a complete list of all the possible operations you can perform in knitting we have decided to have a very open format, that allows the definition of new instructions.

Instructions are also defined in JSON format. Here is an example, the “k2tog” instruction:

[
    {
        "type" : "k2tog",
        "title" : {
            "en-en" : "Knit 2 Together"
        },
        "number of consumed meshes" : 2,
        "description" : {
            "wikipedia" : {
                "en-en" : "https://en.wikipedia.org/wiki/Knitting_abbreviations#Types_of_knitting_abbreviations"
            },
            "text" : {
                "en-en" : "Knit two stitches together, as if they were one stitch."
            }
        }
    }
]

 

Knitting patterns consist of multiple rows, which consist of multiple instructions. Furthermore we want to define the connections between rows. This is important, so we can express gaps or slits which are multiple rows long. For example when knitting pants the two legs will be separate. They will be knit separately and their combined width will be increased in comparison to the width of the hip.
Here is an example for a pattern which specifies a cast on in the first row, then a row where all stitches are knit, then the last row is bound off.

{
  "type" : "knitting pattern",
  "version" : "0.1",
  "comment" : {
    "content" : "cast on and bind off",
    "type" : "markdown"
    },
  "patterns" : [
    {
      "id" : "knit",
      "name" : "cobo",
      "rows" : [
        {
          "id" : 1,
          "instructions" : [
            {"id": "1.0", "type": "co"},
            {"id": "1.1", "type": "co"},
            {"id": "1.2", "type": "co"},
            {"id": "1.3", "type": "co"}
          ]
        },
        {
          "id" : 2,
          "instructions" : [
            {"id": "2.0"},
            {"id": "2.1"},
            {"id": "2.2"},
            {"id": "2.3"}
          ]
        },
        {
          "id" : 3,
          "instructions" : [
            {"id": "3.0", "type": "bo"},
            {"id": "3.1", "type": "bo"},
            {"id": "3.2", "type": "bo"},
            {"id": "3.3", "type": "bo"}
          ]
        }
      ],
      "connections" : [
        {
          "from" : {
            "id" : 1
          }, 
          "to" : {
            "id" : 2
          }
        },
        {
          "from" : {
            "id" : 2
          }, 
          "to" : {
            "id" : 3
          }
        }
      ]
    }
  ]
}

Connections are defined “from” one row “to” another.  The ids identify the rows. The optional attribute start defines the mesh where the connection starts. If start is not defined, the first mesh of the row is assumed. When indexing the list of meshes in a row the first index is 1. The optional attribute “meshes” describes how many meshes will be connected, starting from the mesh defined in “start”.

The resulting parsed Python object structure looks like this:

row model

The Python object structure for working with the parsed knitting pattern.

Each row has a list of instructions. Each instruction produces a number of meshes and consumes a number of meshes. These meshes are also the meshes that are consumed/produced by the rows.

 

Introduction of the 2016 GSoC projects with AYAB

Hi, we are Kirstin and Nicco and for the next couple of months we will be working on the AYAB project. AYAB is an abbreviation for All Yarns Are Beautiful and the project works on the Software that interfaces with the knitting machine and directs in in what to knit. Zou can read more about the existing software in the recent blogposts.
We want to implement two new features and expand on the functionality of the software that replaces the original firmware of the knitting machine.

We want to work on an exchangeable format that stores all information necessary for knitting e.g. a sweatshirt. It should contain the sewing pattern, the color pattern(s) defined for the different parts of the knit piece and the stitch pattern, also defined for the different parts of the knit piece.

This new information that we will have through the format will allow us to create directions for the user in case the machine cannot switch yarn colors on its own or add or remove stitches, but the user can. We want the software to have on screen instructions for the user, telling the user what to do before they knit the next row. This will make knitting with more than two yarn colors possible and make it easier for users to knit shapes where they need to add and remove stitches. This is very much needed when knitting clothes.

Our next steps are to make user studies to find out about how people use the knitting machines, what is necessary and important. If you like to lend us a hand, please contact us. Also we are doing weekly hangouts in the evening, Tuesday 21:00 (Berlin, GMT+2).